:

Szerző: Hlács Ferenc

2019. november 12. 10:30

Megnyitja AI optimalizációs keretrendszerét az LG

A koreai vállalat Advanced AI részlege által fejlesztett, Autptimizer névre hallgató framework GitHubon már elérhető.

Megnyitja a különböző AI modellek optimalizációjára használt keretrendszerét az LG - az Auptimizer névre hallgató framework minimális kódolással teszi lehetővé megfelelő hiperparaméterek, azaz az egyes algoritumusok, a teljes modell teljesítményét befolyásoló változóinak beállítását.

Miután a gépi tanulási modellek finomhangolásának megfelelő skálázása nem triviális feladat, a megfelelő hiperparaméterek beállítása sokszor rendkívül időigényes lehet, hiszen a a számítási feladatok mellett egy sor egyéb teendőt is igényel, a munkafolyamatok ütemezésétől a különböző paraméterek nyomon követéséig. A koreai vállalat Advanced AI részlege által fejlesztett Auptimizer hiperparaméter-optimalizációs (HPO) keretrendszer, ezeket a feladatokat, a különböző AI modellek csiszolását és eredményeik átlátható követését hivatott gördülékenyebbé tenni a szakértők számára.

lgill

Ahogy a Venturebeat is kiemeli, a megoldás egyik erőssége, hogy rendkívül felhasználóbarát, az egyes konfigurációk beállításai során szinte kézen fogva vezeti a felhasználót, és csak néhány sor kódot igényel a működéshez - továbbá a különböző hiperparaméteres algoritmusok, illetve számítási erőforrások közötti váltás is egyszerűen végigzongorázható vele, a betanítási scriptek újraírása nélkül.

Az AI és a nagy full-full-stack trend

Az AI farvizén számos új informatikai munkakör születik, vagy már ismert munkák kapnak új nevet és vele extra elvárásokat is.

Az AI és a nagy full-full-stack trend Az AI farvizén számos új informatikai munkakör születik, vagy már ismert munkák kapnak új nevet és vele extra elvárásokat is.

Mikor egy adott gépi tanulási kísérlet megkezdődik, az Autpimizer folyamatosan ellenőrzi az elérhető erőforrásokat és hiperparaméter-opciókat, amelyekkel képes azonosítani a lehető leghatékonyabb modellt. Az összetettebb algoritmusok esetében pedig, amelyeknél kifejezetten az előre megadott hiperparaméterekre van szükség, a rendszer menti azok értékeit a későbbi felhasználásra.

Az Auptimizerrel egyszerűen hozhatók létre, vezérelhetők és dokumentálhatók a gépi tanulási projektek, a keretrendszer továbbá az új HPO algoritmusok integrálását is megkönnyíti. A megoldással a használni kívánt erőforrás-konfigurációk is egyszerűen megadhatók, a különböző processzoroktól a GPU-kon át egészen a felhőszolgáltatásokig - a framework ráadásul a létező erőforrás-kezelő eszközökkel is kompatibilis, mint a Boto 3. Az Auptimizert az érdeklődők már górcső alá vehetik, a projekt kódbázisa GitHubon szabadon elérhető.

Szeptember 15-én, hétfőn ONLINE formátumú, a Kafka alapjaiba bevezető képzést indít a HWSW, ezért most összefoglaltuk röviden, hogy miért érdemes részt venni ezen a tanfolyamon.

a címlapról

MS

0

Lezárta a Teams-ügyet az EU

2025. szeptember 12. 12:45

A Bizottság elfogadta a Microsoft által tett engedményeket, nincs retorzió az idestova öt éve húzódó eljárás végén.

bango

5

Tartalomautomatával bővül a OneTV

2025. szeptember 12. 09:27

A One tévés platformjába a Bango DVM-jét integrálják, ami jelentős mértékben megkönnyíti az új tartalomszolgáltatások bevezetését.