Szerző: Habók Lilla

2022. január 13. 10:49

Minden az adatalapú kísérletekről szól a Netflixnél

Nem csak a saját sorozatfüggésünket bizonyítja, ha sok időt töltünk a Netflix felületén. Sok adattudós dolgozik rajta, hogy személyre szabottnak érezzük az értesítéseket, a felületen megjelenő filmeket, előzeteseket vagy borítóképeket. Szinte kísérleti nyulaknak érezhetjük magunk, mikor elolvassuk, hogy a vállalat a szolgáltatás közben keletkező adataink mi mindenre használja fel az "érdekünkben".

Elárult néhány kulisszatitkot a Netlifx blogja a vállalat kísérletezési projektjeiről, melynek keretében adattudósai a videostreaming platformmal kapcsolatos döntéshozást támogatják. A cégen belül több adatkutató csapat dolgozik, együttműködésben többek közt termékmenedzserekkel, mérnökökkel és különböző ágazatokkal. Az adatos szakértők feladati közé tartozik az adott terület feladatainak megértése is, a hipotézisékből kiinduló (deduktív) és a kísérletekből következtetéseket levonó (induktív) kutatások teljeskörű lefolytatása mellett.

IMÁDJÁK AZ A/B TESZTELÉST

Érthető módon az egyik csapat a platform felhasználószámának növelésével foglalkozik, azon belül is elsősorban azzal, hogy miként lehet a leghatékonyabban, automatizáltan szétosztani a reklámokra fordított költségkeretet a közösségi oldalak és weboldalak között. Céljuk, hogy az elhelyezett reklámok a lehető legtöbb új Netflix-tagot hozzák. Az automatizációt egyrészt fals pozitív és fals negatív esetek is nehezítik, másrészt statisztikailag szignifikáns eredmények esetén előfordulhat, hogy a reklám hatását túlbecsülik vagy ellentétes előjellel kezelik (nem érik el a célközönséget).

Utóbbi problématípusokat az úgynevezett bayesiánus módszerrel próbálják kiküszöbölni, azaz több tesztet is folytatnak egy területen belül, és mindig a korábbi tesztek eredményeit használják fel a következő teszt bemeneteként a "hidelem-mérték" csökkentésére. A következő kérdés az adattudósok számára, hogy milyen ponton érdemes a kísérletezést lezárni, vagyis hogyan lehet megállapítani, hogy a döntésekhez már megfelelő mennyiségű információt adtak az üzletágvezetők számára.

netflix_abteszt_kiserlet

Szoftvertesztelés: ütött az óra

A tesztelői szakmát rengeteg friss hatás éri, kifejezetten nehezített pálya ez mostanság.

Szoftvertesztelés: ütött az óra A tesztelői szakmát rengeteg friss hatás éri, kifejezetten nehezített pálya ez mostanság.

Egy másik érdekes példa a felugró üzenetek megjelenítése és emailek küldése, amelyek a platformra csábítják a felhasználókat, hogy nézzék meg a legújabb vagy aktuálisan legnépszerűbb filmet. A csapat feladata kikísérletezni, hogy az üzenetek az egyszerű bosszantás helyett jókor és megfelelő embereknek érkezzenek, ezáltal ténylegesen filmnézésre ösztönözzenek. Ehhez a felhasználók historikus adatait, és a korábbi üzenetekre adott reakcióit használják fel, illetve hipotézisek alapján folytatnak A/B teszteket. Ehhez az adatkutatók nem írnak folyamatosan új teszteket, hanem a meglévőeket finomítják. A többkarú rabló probléma elvén tanulási modelleket építenek a felhasználók üzenetfogadási szokásai alapján, ahol persze a "rabló" akkor sikeres, ha a netflixező az üzenetre kattint.

Még egy érdekes és jól szembetűnő példa, hogy gyakran két egymás mellett ülő netflixezőnek is teljesen másképp jelenik meg a videóválasztó felület. A filmek borítóképei és más vizuális elemek igyekeznek "bizonyítani", hogy a felhasználó számára az adott választás megfelelő. Például egy trailer elkészítése előtt az adattudós csapat feladata prediktív modellel bizonyítani, hogy a költséges videós előzetes valóban új nézőket fog hozni. A cég ebben az esetben a lassú A/B tesztek mellett "kontextuális bandita algoritmusokat" is használ, amelyek a megerősítéses tanulás során a környezeten kívül más információkat is figyelembe vesznek, hogy ebben az esetben minél inkább a felhasználó ízlésének megfelelő vizuális elemeket illesszenek a filmekhez.

netflix_stranger_things

MIT LEHET MÉG KUTATNI?

Külön csapat foglalkozik például a fizetési megoldások kezelésével, hogy lehetőleg minél többen hosszabbítsák meg az előfizetésüket. Szintén másik csapat vizsgálja a partneri megállapodások keretében adott Netflix-csomagok marketingkampányainak hatását, melynek nehézsége, hogy ebben az esetben nem áll rendelkezésre minden adat a hagyományos összehasonlító tesztekhez. Továbbá streamelés során a Netflix az audio és videó minőséget is A/B teszteli az appot elérhetővé tévő többezer készüléktípuson keresztül, különböző adattömörítő algoritmusokkal, vagy éppen a tartalmak eltérő szervereken való elhelyezésével.

A Netflix egészen sok példát felsorolt az adattudós csapatok közreműködésére az üzleti területekkel, amelyekkel párhuzamosan egy külön platformot is épített kifejezetten mérnökök számára a kísérletezéshez (Netflix Experimentation platform). A bejegyzés is érzékelteti, hogy a vállalat a felsoroltáknál jóval több kísérletet folytat a felhasználók elnyerésére és megtartására, de az összefoglaló jól szemlélteti az e mögött húzódó adatalpú szemléletet, amellyel már több mint 214 millió előfizetőt ér el.

Csatlakozz partnerprogramunkhoz, mi pedig ajánlunk ügyfeleinknek, ezenkívül egyedi kedvezményeket is adunk webhosting csomagjainkra. Próbáld ki ingyenesen az Aruba Cloud-ot, most 40 ezer forint értékű vouchert adunk!

a címlapról