Szerző: Asztalos Olivér

2017. augusztus 23. 15:20

Valós idejú AI feldolgozáshoz szánt projekttel jelentkezett a Microsoft

A Project Brainwave FPGA-kat alkalmaz, amelyekkel már egy rekordot is felállított a cég.

Bemutatta saját fejlesztésű deep learning hardverplatformját a Microsoft. A Project Brainwave részleteit az idei Hot Chips konferencián leplezte le a vállalat, amelytől nagyobb teljesítményt és rugalmasságot várnak a készítők. A fejlesztéssel a mesterséges intelligenciához kapcsolódó műveletek valós idejű végrehajtását célozza a Microsoft, amely képesség a vállalat nyílt felhős platformjában, az Azure-ben is elérhető lesz.

A Project Brainwave rendszer három részből áll, amelyekből az első réteget a nagy teljesítményű, megosztott rendszerarchitektúra jelenti. Ezt követi az FPGA-ra szintetizált DNN motor, amihez egy fordító és futtatókörnyezet kapcsolódik, amelyekkel a gépi tanulásos modelleket lehet telepíteni. A Microsoft megjegyzi, hogy a rendszer hardveres alapját az elmúlt évekbe kiépített masszív FPGA infrastruktúra biztosítja, amivel az egyes DNN-ek (Deep Neural Network) hardveres mikroszolgáltatásként működhetnek. Egyetlen DNN-t akár egy egész csoport FPGA-hoz hozzárendelhető, a menedzselés pedig a CPU-tól (és szoftveres rétegtől) független marad, amivel csökken a késleltetés és növekszik a teljesítmény, így a Microsoft szerint már inkább a hálózat sebessége jelentheti a szűk keresztmetszetet.

Az FPGA-s megközelítés kézenfekvő volt a Microsoft részéről, a vállalat ugyanis már komoly tapasztalatokkal rendelkezik a programozható logikai kapumátrixok terén. A cég többek között a Bing kereső teljesítményének feltornászásához is az FPGA-kat hívta segítségül, a projekt nagyjából négy éve fut. A több éves tapasztalatot kiaknázva tavaly már az Azure-t is megcsapta az FPGA-k szele, a chipeket a felhős adatközpontokban a hálózati forgalom gyorsítására és optimalizálására használja a cég.

Ahogy arról már több alkalommal is szó esett, az FPGA-k gyakorlatilag teljesen szabadon programozható chipek, a nagy szabadságért cserébe viszont általános számítási teljesítményük relatíve alacsony. A Microsoft szerint ugyanakkor (egyelőre) fontosabb a rugalmasság, aminek hála gyakorlatilag bármilyen adattípus feldolgozható. Ennek megfelelően a Microsoft úgynevezett "soft" DPU-kat (Deep Learning Processing Units) hozott létre, amelyek a kívánt adattípust minden esetben a szintézis idő alapján határozzák meg.

Mindent vivő munkahelyek

Mindig voltak olyan informatikai munkahelyek, melyek nagyon jól fekszenek az önéletrajzban.

Mindent vivő munkahelyek Mindig voltak olyan informatikai munkahelyek, melyek nagyon jól fekszenek az önéletrajzban.

A dizájn az ASIC-ok jelfeldolgozó blokkját és a végrehajtó logikát szintetizálja FPGA-kon, amivel a Microsoft szerint maximalizálható a funkcionális egységes mennyisége és hatékonysága. A vállalat azt állítja, hogy ezzel a megközelítéssel megmaradt a rugalmasság, ugyanis pár hét alatt akár komolyabb változtatások is megvalósíthatóak a rendszerben, miközben a teljesítmény hasonló, vagy bizonyos esetekben akár jobb is, mint "hard" DPU-k, például a Google TPU-ja esetében.

A Microsoft szerint ugyanis a Project Brainwave complex, nem kötegelt végrehajtás mellett is nagy számítási teljesítményre képes, miközben a "hard", szilíciumba vésett DPU-k kapacitása csak a számításigényes CNN-es (Convolutional Neural Network) végrehajtás mellett aknázható ki. A vállalat állítja, hogy ez számos esetben nem reprezentatív, LSTM (Long Short Term Memory), GRU (Gated Recurrent Unit), vagy nyelvi feldolgozás mellett ugyanis (egyelőre) a chipek nem versenyképesek. A vállalat szerint egy másik jó példa a kötegelt végrehajtás, ahol a "hard" DPU-k ugyancsak erősek, ám valós idejű végrehajtás esetében a kötegelés nem opció, így az előny ebben az esetben is szertefoszlik.

A Microsoft elsőként Stratix 10 FPGA-kon tesztelte a Project Brainwave-et, amely egy nagy, a Resnet-50 méretének körülbelül ötszörösét jelentő GRU modell esetében 39,5 TFLOPS-os teljesítmény mutatott, miközben a kéréseket egy milliszekundum alatt teljesítette a rendszer, ily módon pedig 130 000 számítási műveletet értek el egyetlen ciklus alatt. A készítők szerint ez új rekord, az eredmény pedig várhatóan tovább javul, a következő hónapokban ugyanis folyamatos optimalizációkkal gazdagodik a Project Brainwave.

Végül, de nem utolsó sorban a szoftveres támogatást is kiemeli a Microsoft. A Project Brainwave támogatja a népszerűbb deep learning keretrendszereket, így például a Microsoft Cognitive Toolkitet és Google Tensorflow-t, a cég szerint pedig a lista folyamatosan bővül majd. Emellett a vállalat azt is ígéri, hogy a valós idejű AI feldolgozás a közeljövőben az Azure-ben is megjelenik, amivel bárki hozzáférhet majd a rekorder teljesítményhez.

a címlapról