
Kubernetes,
today’s saviour

a.k.a. greenfield devops in 18
minutes

whoami
● Extrovert, skeptical, social geek

● Now Infrastructure Lead @ Connatix
Before: CTO @ SmartUp

● Industry experience: IoT, Payments,
EdTech, Automotive, Advertising

● Interests: Architecture, OSS, Linux
Hobbies: drumming, CrossFit

Def. Kubernetes - aka k8s
“Kubernetes is a portable, extensible, open-source platform for
managing containerized workloads and services, that facilitates both
declarative configuration and automation. [...] Google open-sourced
the Kubernetes project in 2014. Kubernetes builds upon a decade and a
half of experience [...] running production workloads at scale,
combined with best-of-breed ideas and practices from the community.”

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

http://www.allthingspresentations.com/mirror-mirror

1. k8s is from Google, which is good

2. We start using k8s

3. We are now Google, which is
good

Logical reasoning 101

http://www.allthingspresentations.com/mirror-mirror/

Big Tech

● Huge infrastructure spread in
multiple geographical regions

● Millions of customers and high
utilization

● Hundreds of engineering teams
working in choreography deploying
hundreds of changes to production
daily

● Failing hardware is everyday, BAU
and not affecting customers

● Years of investment into operation
automation and tooling

Lions versus cats
Our company

● Tens of servers usually in a single
cloud datacenter

● Couple hundred customers
● Handful of engineering teams, high

level of orchestration, deploying a
couple times a month into
production

● Failing hardware is catastrophical,
causing P1 incidents and downtime

● Some investment in documenting
operation or some scripts

Lions and Cats

What do we want?

● Ability for scaling computing power and utilize computers as cluster
● Automated, easy to understand standard workflows and primitives for handling

deployments
● Tooling for packaging and shipping software in an immutable way (no more works on

my machine)
● Consistency across environments both in features, tooling and behavior
● Maximize resource utilization maintaining appropriate level of isolation
● Platform features like service discovery and load balancing

Lions are cats, but bigger

What do we want?

● Ability for scaling computing power and utilize computers as cluster
● Automated, easy to understand standard workflows and primitives for handling

deployments
● Tooling for packaging and shipping software in an immutable way (no more works on

my machine)
● Consistency across environments both in features, tooling and behavior
● Maximize resource utilization maintaining appropriate level of isolation
● Platform features like service discovery and load balancing

Lions are cats, but bigger

These are what c
ats dream

about a
nd lio

ns can’t l
ive

with
out.

Anatomy of a k8s cluster

https://kubernetes.io/docs/concepts/overview/components/

https://kubernetes.io/docs/concepts/overview/components/

The atom of k8s - the Pod
● Basic execution unit of a Kubernetes application [...]

represents processes running on your Cluster
● Single or multiple containers scheduled together that share

resources
○ Containers are usually Docker but can use other runtimes (e.g. CRI-O, containerd)
○ Containers from a Pod share network namespace, can communicate via localhost
○ Containers from a Pod share volumes, can communicate via filesystem

● In practice we almost never launch them directly, but use higher
level concepts

● Are ephemeral, do not self-heal, they go away with a failing node

Controllers - managing pods
● Continuously “work” towards achieving the desired state of pods,

scheduling, replacing, relocating and destroying them as necessary
● Different kinds

○ ReplicaSet - makes sure a given number of pods are running
○ StatefulSet - like RS, but also takes care of maintaining state (e.g. mysql-1, mysql-2)
○ DaemonSet - run pod on all nodes (e.g. log shipper, Consul agent)
○ Deployment

● Most commonly we use Deployment, which can
○ create ReplicaSets (e.g. my-awesome-api:0.0.1 should run 3 pods)
○ update ReplicaSets (e.g. my-awesome-api should be updated from 0.0.1 to 0.0.2)
○ scale a deployment (e.g. from 3 pods to 30 pods)
○ clean up ReplicaSets

Service - your pod is not alone
● “An abstract way to expose an application running on a set of Pods

as a network service.” (kubernetes.io)
● Each pod has its own IP address, but service provides a unified way

of accessing pods of a kind
● Types

○ ClusterIP - service reachable from within the cluster
○ NodePort - open port on each node (you take care of collisions)
○ LoadBalancer - cloud provider dependant
○ ExternalName - just use DNS without any proxying

● Almost all services use kube-proxy to route traffic, except
ExternalName

Volumes - things are worth holding on to
● Containers are by default ephemeral, and their data is removed on

deletion
● Volumes add support for maintaining state of pod and sharing data

between containers
● If we need persistence, we need Persistent Volumes (PV) and

Persistent Volume Claims (PVC)
● There are lots of volume providers, a couple examples:

○ emptyDir
○ hostPath
○ awsElasticBlockStore
○ azureDisk
○ gcePersistentDisk

Some more advanced topics
● Contexts
● Namespaces
● Ingress and Ingress Controllers
● Secrets
● Custom Resources and Definitions (CR, CRD)
● Operators
● Role based access control (RBAC)

kubectl
Syntax: $ kubectl [command] [TYPE] [NAME] [flags]

Examples:
List all pods in plain-text output format.

kubectl get pods

Create a service using the definition in example.yaml

kubectl apply -f example.yaml

Get output from running 'date' from pod <pod-name>

kubectl exec <pod-name> date

Start streaming the logs from pod <pod-name>. This is similar to the 'tail -f' Linux command.

kubectl logs -f <pod-name>

Create port forward from local environment to a pod

kubectl port-forward <pod-name> <local_port>:<pod_port>

kubectl
Syntax: $ kubectl [command] [TYPE] [NAME] [flags]

Examples:
List all pods in plain-text output format.

kubectl get pods

Create a service using the definition in example.yaml

kubectl apply -f example.yaml

Get output from running 'date' from pod <pod-name>

kubectl exec <pod-name> date

Start streaming the logs from pod <pod-name>. This is similar to the 'tail -f' Linux command.

kubectl logs -f <pod-name>

Create port forward from local environment to a pod

kubectl port-forward <pod-name> <local_port>:<pod_port>

Under the hood they are objects
with:

● apiVersion
● kind
● metadata
● spec

And status, which is managed by the
control plane.

YAML. YAML everywhere. apiVersion: apps/v1

kind: Deployment

Metadata:

 name: nginx-deployment

 Labels:

 app: nginx

spec:

 replicas: 3

 selector:

 matchLabels:

 app: nginx

 Template:

 Metadata:

 Labels:

 app: nginx

 Spec:

 Containers:

 - name: nginx

 image: nginx:1.7.9

 Ports:

 - containerPort: 80

Power of declarative

Power of declarative

Declarative

Medium rare

ImperativePlace the steaks on the grill and

cook until golden brown and

slightly charred, 4 to 5 minutes.

Turn the steaks over and continue

to grill 3 to 5 minutes for
medium-rare (an internal

temperature of 135 degrees F), 5 to

7 minutes for medium (140

degrees F) or 8 to 10 minutes for

medium-well (150 degrees F).

That’s cool. I want it.
● For local development kubernetes/minikube can be used
● For production you can:

○ Download k8s binaries and run k8s as systemd services
○ Run kubelet in systemd and other k8s components as containers
○ Use kubeadm
○ “The hard way” documented by Kelsey Hightower in

kelseyhightower/kubernetes-the-hard-way

If you are in the cloud you should probably use a k8s as a service version(managed).
They are called: AWS EKS, GCP GKE, AZ AKS.

That’s cool. I want it.
● For local development kubernetes/minikube can be used
● For production you can:

○ Download k8s binaries and run k8s as systemd services
○ Run kubelet in systemd and other k8s components as containers
○ Use kubeadm
○ “The hard way” documented by Kelsey Hightower in

kelseyhightower/kubernetes-the-hard-way

If you are in the cloud you should probably use a k8s as a service version(managed).
They are called: AWS EKS, GCP GKE, AZ AKS.

No contro
l plane

=

 no contro
l plane ache.

Creating one is easy as 1-2-3

Complexity equal to ordering pizza.
But we hate picking up the phone over and over again.

Source: Domino’s

Terraform
● “Terraform is a tool for building, changing, and versioning infrastructure

safely and efficiently. (terraform.io)
● Human readable DSL, infrastructure as code
● Declarative (like a good steak)
● Validate, Plan, Apply
● Manages several types of resources using different Providers
● State can be remote and locked(S3, Azure Blob, git, etc)
● Modules for reusability

Terraform - module example
resource "azurerm_resource_group" "aks" {
 name = "${local.prefix}-${var.identifier}"
 location = var.location
}

resource "azurerm_kubernetes_cluster" "cluster" {
 name = var.identifier
 location = azurerm_resource_group.aks.location
 resource_group_name = azurerm_resource_group.aks.name
 kubernetes_version = “1.15.1”
 dns_prefix = "${var.identifier}"
agent_pool_profile {
 name = "default"
 count = 5
 vm_size = var.vm_size
 os_type = "Linux"
 os_disk_size_gb = var.default_agent_pool_node_os_disk_size
 }
 service_principal {
 client_id = azuread_application.aks_cluster.application_id
 client_secret = random_string.aks_cluster_password.result
 }
}

resource "azuread_application" "aks_cluster" {
 name = "aks-${var.identifier}"
}

resource "azuread_service_principal" "aks_cluster" {
 application_id = azuread_application.aks_cluster.application_id
}

resource "random_string" "aks_cluster_password" {
 length = 16
 special = false
keepers = {
 service_principal = azuread_service_principal.aks_cluster.id
 }
}

resource "azuread_service_principal_password" "aks_cluster_passwod" {
 service_principal_id = azuread_service_principal.aks_cluster.id
 value = random_string.aks_cluster_password.result
 end_date = timeadd(timestamp(), "87600h")
}

Terraform - main
Main module

terraform {
 backend "azurerm" {
 storage_account_name = "hwsw2019"
 container_name = "tfstate"
 key = "terraform.tfstate"
 }
}

module "aks" {
source = "./modules/aks/"
 identifier = "poc"
 location = "westeurope"
 default_agent_pool_size = "5"
}

Outputs from module

output "client_certificate" {
 value = azurerm_kubernetes_cluster.cluster.kube_config[0].client_certificate
}

output "kube_config" {
 value = azurerm_kubernetes_cluster.cluster.kube_config
 sensitive = true
}

output "kube_admin_config" {
 value = azurerm_kubernetes_cluster.cluster.kube_admin_config
 sensitive = true
}

GitLab
● is a web-based DevOps lifecycle tool that provides a Git-repository manager

providing wiki, issue-tracking and CI/CD pipeline [..]

gitlab-ci.yml

image:

 name:

hashicorp/terraform:light

stages:

 - validate

 - plan

 - apply

Apply stage

apply:
 stage: apply
 script:
 - terraform apply -input=false "planfile"
 dependencies:
 - plan
 when: manual

GitLab - some exciting features

Support for variables
(protected & masked)

Support for
environments

Helm
helps you manage Kubernetes applications — Helm Charts help you
define, install, and upgrade even the most complex Kubernetes
application. (helm.sh)

Typical kubernetes deployment

Final thoughts

Thanks for
your kind
attention!

Láng Máté
mate @ matelang.dev

Twitter: @langmate
GitHub: matelang

Medium: @matelang
LinkedIn: in/matelang

