Do we always have to start from scratch?

Or is there a better way?

Levente Szabados

Frankfurt School of Finance and Management

Al Partners

Motivation:

- "- We would like to have a chatbot!"
- "- Sure! Do you have enough data?"
- "- Absolutely, we are overwhelmed!'

(Turns out to be 150 emails...)

"- OOOK, wel, then, let's see what we can do?"

Options:

Try to learn a whole language with deep meaning from 150 emails?
Give it up and go for a walk?
????

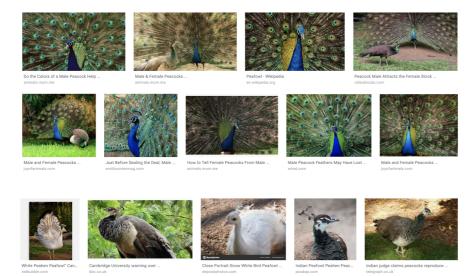
Sidenote:

It is in itself a more nuanced problem, if we have enough data or not, see:

<u>"Do I have enough data for Machine Learning?" — Um... maybe...?</u> (<u>https://medium.com/@haomiao/do-i-have-enough-data-for-machine-learning-um-maybe-d45f41234d2d</u>)

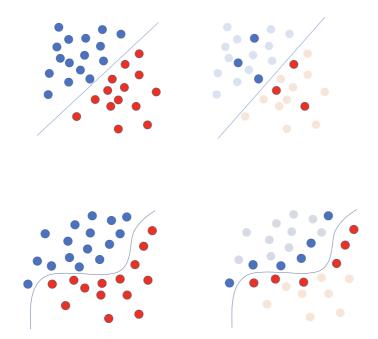
The answer is: "It depends."

And it does **not** just depend on dimensionality.



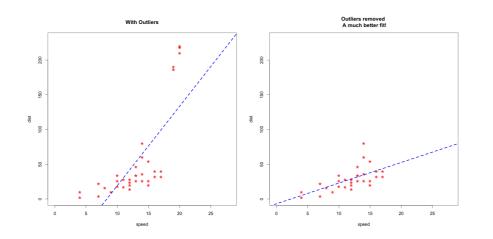
You can simply **distinguish peacocks from peahen** by measuring the **amount of green** on the picture - even though the picture is of high dimensionality (as many as number of pixels).

The amount of data is roughly proportionate on **how difficult decision you have to make**.



Which in many cases can be only found out by trying.

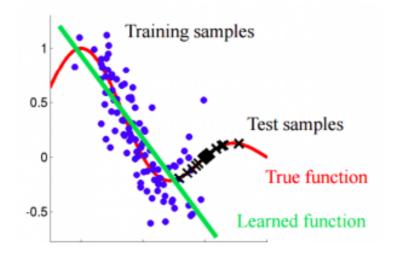
It is important to note that all learning is a form of memorization.



We would like to "distill" the essence, remember what is the **defining characteristic** of the data, and **disregard "noise"**, eg. outliers.

This in turn has strong connections with **overfitting**, since if we "memorize" also the **"unimportant"**, **random properties** of the data, we will have a **bad generalization** performance out of sample

In turn, good generalization is crucial in case of **"covariate shift"**, when the data distribution changes **out of sample**.

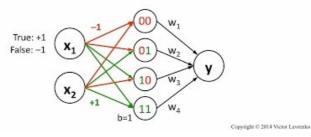


That is: ALWAYS :-)

So if we have learned the right function, we can still generalize.

Representation Power of NNs

- NN with 1 hidden layer can represent:
 - any bounded continuous function (to arbitrary ε)
 - Universal Approximation Theorem [Cybenko 1989]
 - any Boolean function (exactly)



And since Deep Learning models have **huge memory capacity**, we would like to see if they can memorize some **generally useful patterns** across domains!

That is: train a model on an abundant, general dataset, (preferredly unsupervised), and apply it to the task at hand.

The other answer to the enough data question is:

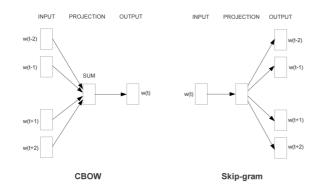
"Look at what others did, maybe you get some help!"

This latter strategy we will follow. :-)

1. Static representation transfer:

Learn a shallow representation, build a model on it.

Example: word2vec + SVM

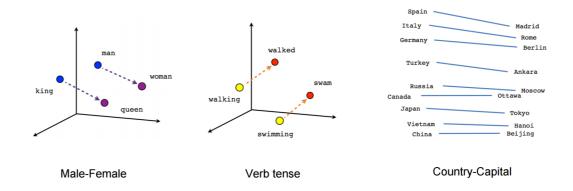


Mikolov et. al. substituted the large matrix decomposition task in language representation learning to a local context prediction task.

The main aim was: **learning a good representation** by solving an (uninteresting) unsupervised problem.

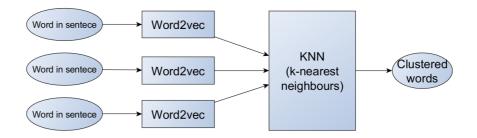
Representation

Word2vec as a quasi side-effect of the prediction task learns systematic mapping of word syntax and semantics to a dense vector space.



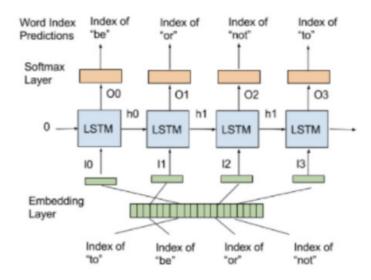
A stable decision boundary in this space is good possible, eg. with a large margin classifier like SVM.

In this approach, representation is passively transferred, it is not modified during the learning of the target task.



2. End-to-end training with transferred representations

Example: Initialize embedding layer of a deep network with word2vec, then let it train further



Pro:

- Easy to implement
- Gives visible boost to models

Con:

- Only "shallow" knowledge has been transferred
- With initial updates some of the information gets destroyed

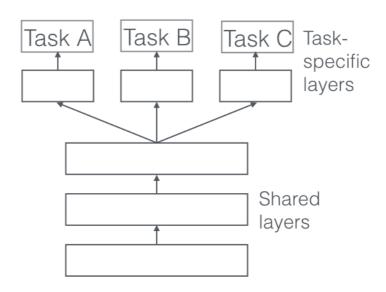
Forgetting starts to pop up!

3. Deep representation transfer

The general approach on deep representation transfer capitalizes on the fact, that learned representations for neural models are typically having two somewhat distinguishable structural elements:

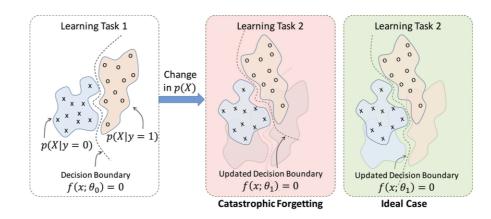
- the first (MANY!) layers are for representation learning ("embedding")
- **the last** (typically 1 or so) **layers are for classification** ("cut", ie. a linear classifier)

With this in mind, we can try to transfer a complete representation "stack", and only **replace the last decision layer**.



(Please observe, that nothing prevents us from parallel, multi-task learning at this point! Hence the picture above.)

The problem: Catastrophic forgetting

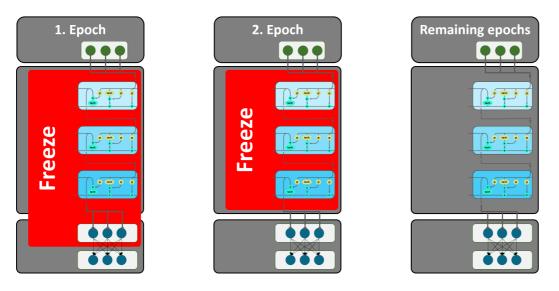


Even in the "natural" case, things can be easily forgotten.

Combine this with the possibility, that the **early gradient updates cause much noise** since the last classification layers can be newly initialized for the task and you will get pretty weak benefit from transfer!

One solution: Gradual unfreezing

The idea is pretty simple: for the early part of the transfer learning based training do not allow updates on weights for the majority of the network, just **gradually unfreeze** the layers later on.

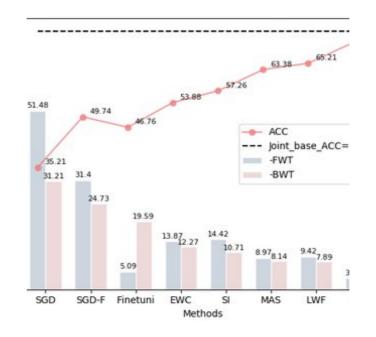


See a detailed analysis of Ruder and co.'s UMLFIT here

(https://medium.com/explorations-in-language-and-learning/transfer-learning-in-nlp-2d09c3dfaeb6).

Multiple other approaches: Verdict is still out

The development of more effective transfer learning methods is far from finished, there are quite <u>recent papers (https://arxiv.org/abs/1812.01640)</u> which offer a good survey:



Recently a more **systematic analysis of transfer learning with BERT model** has been carried out in context of sentiment classification.

Multiple approaches are being studied:

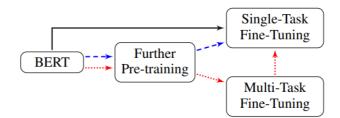


Figure 1: Three general ways for fine-tuning BERT, shown with different colors.

It became critical

The widespread success of Deep Learning is more and more based on the fact, that:

1. Huge pre-trained models are available

2. Integration work became more easy, methods standardizing.

In fact, a whole "cottage industry" has spawn for making the adaptation work easy.

Some examples / infrastructure:

- <u>Transfer learning with TensorfLow Hub</u> (<u>https://www.tensorflow.org/tutorials/images/transfer_learning_with_hub</u>)
- <u>BERT Text Classification in 3 Lines of Code Using Keras</u> (<u>https://towardsdatascience.com/bert-text-classification-in-3-lines-of-code-using-keras-264db7e7a358</u>)
- <u>Pre-trained models for speech recognition</u> (<u>https://www.kaggle.com/c/tensorflow-speech-recognition-challenge/discussion/43576</u>)

Conclusion:

No. Typically we won't start from scratch!

"Oh, only 150 emails? No problem! I import pre-trained BERT in 3 lines, and we are good to go!" :-)