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Motivation:

"- We would like to have a chatbot!"
"- Sure! Do you have enough data?"
"- Absolutely, we are overwhelmed!

(Turns out to be 150 emails...)

"- O0O0K, wel, then, let's see what we can do?"
Options:

1. Try to learn a whole language with deep meaning from 150 emails?
2. Give it up and go for a walk?



Sidenote:

It is in itself a more nuanced problem, if we have enough data or not, see:

“Do | have enough data for Machine Learning?” — Um... maybe...?

(https:/medium.com/@haomiao/do-i-have-enough-data-for-machine-learning-um-
maybe-d45f41234d2d)

The answer is: "It depends.”


https://medium.com/@haomiao/do-i-have-enough-data-for-machine-learning-um-maybe-d45f41234d2d

And it does not just depend on dimensionality.

You can simply distinguish peacocks from peahen by measuring the amount of green on
the picture - even though the picture is of high dimensionality (as many as number of
pixels).



The amount of data is roughly proportionate on how difficult decision you have to
make.

Which in many cases can be only found out by trying.



It is important to note that all learning is a form of memorization.
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We would like to "distill" the essence, remember what is the defining characteristic of
the data, and disregard "noise", eg. outliers.



This in turn has strong connections with overfitting, since if we "memorize" also the
"unimportant”, random properties of the data, we will have a bad generalization
performance out of sample
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In turn, good generalization is crucial in case of "covariate shift", when the data
distribution changes out of sample.
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That is: ALWAYS :-)

So if we have learned the right function, we can still generalize.



Representation Power of NNs

* NN with 1 hidden layer can represent:

— any bounded continuous function (to arbitrary &)
* Universal Approximation Theorem [Cybenko 1989]
— any Boolean function (exactly)

And since Deep Learning models have huge memory capacity, we would like to see if
they can memorize some generally useful patterns across domains!

That is: train a model on an abundant, general dataset, (preferredly unsupervised), and
apply it to the task at hand.



The other answer to the enough data question is:
"Look at what others did, maybe you get some help!"

This latter strategy we will follow. :-)



1. Static representation transfer:

Learn a shallow representation, build a model on it.

Example: word2vec + SVM
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Mikolov et. al. substituted the large matrix decomposition task in language
representation learning to a local context prediction task.

The main aim was: learning a good representation by solving an (uninteresting)
unsupervised problem.



Representation

Word2vec as a quasi side-effect of the prediction task learns systematic mapping of
word syntax and semantics to a dense vector space.
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A stable decision boundary in this space is good possible, eg. with a large margin
classifier like SVM.



In this approach, representation is passively transferred, it is not modified during the
learning of the target task.
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2. End-to-end training with transferred
representations

Example: Initialize embedding layer of a deep network with word2vec, then let it train
further
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Pro:
o Easy to implement
» Gives visible boost to models
Con:
e Only "shallow" knowledge has been transferred
o With initial updates some of the information gets destroyed

Forgetting starts to pop up!



3. Deep representation transfer

The general approach on deep representation transfer capitalizes on the fact, that
learned representations for neural models are typically having two somewhat
distinguishable structural elements:

« the first (MANY!) layers are for representation learning ("embedding")
 the last (typically 1 or so) layers are for classification ("cut", ie. a linear
classifier)

With this in mind, we can try to transfer a complete representation "stack", and only
replace the last decision layer.



Task Al |Task B| [Task C| Task-
f i t specific
layers
i Shared
i layers

(Please observe, that nothing prevents us from parallel, multi-task learning at this point!
Hence the picture above.)



The problem: Catastrophic forgetting
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Even in the "natural" case, things can be easily forgotten.

Combine this with the possibility, that the early gradient updates cause much noise
since the last classification layers can be newly initialized for the task and you will get

pretty weak benefit from transfer!



One solution: Gradual unfreezing

The idea is pretty simple: for the early part of the transfer learning based training do not
allow updates on weights for the majority of the network, just gradually unfreeze the
layers later on.

Remaining epochs

See a detailed analysis of Ruder and co.'s UMLFIT here
(https:/medium.com/explorations-in-language-and-learning/transfer-learning-in-nlp-
2d09c3dfaebb).



https://medium.com/explorations-in-language-and-learning/transfer-learning-in-nlp-2d09c3dfaeb6

Multiple other approaches: Verdict is still out

The development of more effective transfer learning methods is far from finished, there
are quite recent papers (https:/arxiv.org/abs/1812.01640) which offer a good survey:
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https://arxiv.org/abs/1812.01640

Recently a more systematic analysis of transfer learning with BERT model has been
carried out in context of sentiment classification.

Multiple approaches are being studied:
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Figure 1: Three general ways for fine-tuning BERT,
shown with different colors.



It became critical

The widespread success of Deep Learning is more and more based on the fact, that:

1. Huge pre-trained models are available
2. Integration work became more easy, methods standardizing.

In fact, a whole "cottage industry" has spawn for making the adaptation work easy.

Some examples / infrastructure:

o Transfer learning with TensorfLow Hub
(https:/www.tensorflow.org/tutorials/images/transfer_learning_with hub)

o BERT Text Classification in 3 Lines of Code Using Keras
(https:/towardsdatascience.com/bert-text-classification-in-3-lines-of-code-
using-keras-264db7e7a358)

o Pre-trained models for speech recognition
(https:/www.kaggle.com/c/tensorflow-speech-recognition-
challenge/discussion/43576)



https://www.tensorflow.org/tutorials/images/transfer_learning_with_hub
https://towardsdatascience.com/bert-text-classification-in-3-lines-of-code-using-keras-264db7e7a358
https://www.kaggle.com/c/tensorflow-speech-recognition-challenge/discussion/43576

Conclusion:

No. Typically we won't start from scratch!

"Oh, only 150 emails? No problem! | import pre-trained BERT in 3 lines, and we are
good to go!" :-)



