
Bevezetés a gRPC
használatába

Élet a SOAP és a REST után

Márk Sági-Kazár

2023-03-22 @ HWSW meetup

whoami
Márk Sági-Kazár
Engineering Technical Lead @ Cisco

@sagikazarmark
https://sagikazarmark.hu

https://twitter.com/sagikazarmark
https://sagikazarmark.hu/

Agenda
About RPC
RPC vs REST
Introduction to gRPC
Implementing a gRPC service
Advanced features
When to use gRPC?
Alternatives

Code samples
https://github.com/sagikazarmark/grpc-intro-workshop

https://github.com/sagikazarmark/grpc-intro-workshop

About RPC

Definition 🤔
[…] a computer program causes a procedure
(subroutine) to execute in a different address space
(commonly on another computer on a shared network),
which is coded as if it were a normal (local) procedure
call, without the programmer explicitly coding the
details for the remote interaction
Wikipedia

https://en.wikipedia.org/wiki/Remote_procedure_call

Definition
in a different address space → someone else’s computer
normal (local) procedure call → interface
no details for the remote interaction → implementation

Interface Definition Language
a language for describing communication
programming language agnostic
serves as a contract for RPC APIs

RPC vs REST

RPC REST

Operates on procedures
(“function calls”)

resources

Underlying
protocol

unspecified primarily HTTP

Interactions protocol
encapsulated

HTTP is part of
the contract

RPC is more suitable for APIs describing actions (vs
resources)
RPC has better type-safety guarantees
RPC is more strict
REST may be more performant when operating on large
amount of data

RPC example in HTTP
POST /sayHello HTTP/1.11
Host: api.example.com2
Content-Type: application/json3

4
{5
 "userId": 16
}7

REST example
GET /users/1/greeting HTTP/1.11
Host: api.example.com2

Introduction to gRPC

About gRPC
High performance
Language agnostic ()
Uses http/2 transport
Bi-directional streaming
Pluggable auth, tracing, load balancing and health
checking

supported languages

https://grpc.io/docs/languages/

Source

https://grpc.io/docs/what-is-grpc/introduction/

IDL: Protocol Buffers
Interface Definition Language
Message format (binary serialization)
Code generation framework

Example 1: Protocol Buffers

Implementing a gRPC service

Example 2: Service definition and
server implementation

Example 3: Using the client stub

RPC lifecycle
Unary RPC
Server streaming RPC
Client streaming RPC
Bidirectional streaming RPC

Example 4: Server streaming RPC

Advanced features

Metadata
Authentication

Error handling

https://grpc.io/docs/guides/auth/
https://grpc.io/docs/guides/error/

Example 5: Authentication and
error handling

Interceptors
Act as middlewares during the request lifecycle
Server vs Client
Unary vs Stream

Example 6: Server unary interceptor

When to use gRPC?

With great power comes great responsibility

API operates on actions instead of resources
When efficient communication is a goal
In polyglot environments
No need for supporting a wide range of clients
Internal APIs

whisper microservices

gRPC weaknesses
Limited web/browser support
Not human-readable format (more difficult to debug)
Steeper learning curve

Alternatives

Twirp
Developed at Twitch as a lightweight alternative to gRPC.

Read the .

https://github.com/twitchtv/twirp

announcement blog post

https://github.com/twitchtv/twirp
https://blog.twitch.tv/en/2018/01/16/twirp-a-sweet-new-rpc-framework-for-go-5f2febbf35f/

Connect
A gRPC-compatible framework with an emphasis on
browser- and web-compatibility (from the creators of).Buf

https://connect.build/

https://buf.build/
https://connect.build/

The End
Any questions?

@sagikazarmark
https://sagikazarmark.hu

https://twitter.com/sagikazarmark
https://sagikazarmark.hu/

Further reading
https://grpc.io/
https://protobuf.dev/
https://github.com/grpc-ecosystem

