
www.leannet.eu

Basics of Service Mesh

www.leannet.eu

Who am I?

Head of Cloud Native Competence Center @ adesso Hungary

 Consulting, training, implementing

 Cloud Native, Kubernetes, Microservices, DevOps

 Previously co-founder @ LeanNet

peter.megyesi@adesso.eu

twitter.com/M3gy0

linkedin.com/in/M3gy0

www.leannet.eu

What are Microservices?

Microservices architecture is software development form that structures an application as a collection of
loosely coupled services having bounded context, which implement business capabilities. Microservices
enable the continuous delivery/deployment of large, complex applications.

Monolithic software

 Vertically scalable

 Hard to maintain and evolve

 Very long build / test / release cycles

 Always fixing bugs

 Lack of innovation

Service Oriented
Architecture

Microservices

 Horizontally scalable

 Services are easy to maintain

 Very short build / test / release
cycles

 Easy to innovate

www.leannet.eu

This is not a Microservice Architecture!

Web Server App Server DB Server

www.leannet.eu

This is Getting There….

www.leannet.eu

But These are True Microservice Architectures!

Twitter Amazon Web Service

www.leannet.eu

But These are True Microservice Architectures!

www.leannet.eu

Monolith vs. Microservices?

Complex application
Easy networking

Easy applications (services)
Complex networking

The fallacies of distributed computing:
• The network is reliable
• Latency is zero
• Bandwidth is infinite
• The network is secure

• Topology doesn't change
• There is one administrator
• Transport cost is zero
• The network is homogeneous

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

www.leannet.eu

What is a Service Mesh?

Service Mesh is dedicated infrastructure layer
in a microservices environment

to consistently manage, monitor and control
the communication between services across

the entire application

www.leannet.eu

Evolution: LAMP to Web Scale

Apache

Apache

Apache

PHP

PHP

PHP

PHP

PHP

MySQL

MySQL

MySQL

Nginx

Nginx

Nginx

DB

DB

DB

SVC

SVC

SVC

SVC

SVC

www.leannet.eu

Evolution: Common Features in DevSecOps

 Dynamic service discovery
 Load balancing
 Health checks
 Timeouts
 Retries
 Circuit breakers

 Traffic encryption (mTLS)
 Fine-grained access control
 Access auditing
 Rate limiting
 Rewrites and redirects

 Consistent metrics
 Access logs
 Distributed tracing
 Fault injection

www.leannet.eu

Evolution: Shared Libraries to Service Mesh

Nginx

Nginx

Nginx

DB

DB

DB

SVC

SVC

SVC

SVC

SVC
Library

Examples for such fat libraries:
 Hystrix @ Netflix

 Stubby @ Google

 Finagle @ Twitter

Disadvantages of shared libraries:
 Have to be implemented in multiple languages

 If the library changes the entire service has to be redeployed

 Too tight involvement of dev teams

www.leannet.eu

Linkerd

A service mesh that adds reliability, security, and visibility to cloud native applications
 Official CNCF Project

 Originally created by Buoyant Inc. based on Finagle

 Written in JAVA

These are the dataplane components (proxies)

This is the control
plane that programs
the individual
dataplane proxies

namerd

www.leannet.eu

Sidecar Model in Container Environments

Disadvantages of per-node model
 Raises security concerns in multi-tenant environments (shared TLS secrets, common authentication, etc.)

 Can only be scaled vertically, not horizontally (give it more memory and CPU and it will handle more connection)

 Not optimized for container workloads

The sidecar model

 Put a proxy next to every container

 This is supported by the POD abstraction in Kubernetes

 Linkerd is considered to be too heavy for such environment!

Node 1 Node 2 Node 3

Proxy

Proxy

Proxy

Proxy

Proxy

Proxy

Proxy

Proxy

Proxy

Proxy

Proxy

Proxy

www.leannet.eu

Sidecar Unjection: Using the Mutating Webhook of the API Server

API
HTTP

handler

Authentication
Authorization

Mutating
admission

API request
Object

Schema
Validation

Validating
admission

Persisted to
etcd

Webhook Webhook Webhook

Happens on pod level if annotation is present
 Namespace
 Pod controller

 Deployment, ReplicaSet, DaemonSet, StatefulSet
 Pod itself

www.leannet.eu

Linkerd2

A novel service mesh that was specifically designed to work in Kubernetes

 Created by Buoyant, the same team who created Linkerd

 Data plane is written in Rust to be very fast and lightweight to sidecar operations (~5MB container size)

 Control plane is written in Go to work well in Kubernetes

 Can be deployed service-by-service (it’s not an all-or-nothing choice…)

www.leannet.eu

Envoy

Envoy is an open source edge and service proxy, designed for cloud-native applications
 Official CNCF Project

 Originally created by Lyft

 Written in C++

 Out of process architecture with advanced threading

 Best in class observability

 Rich APIs called xDS

Features include
 L3/L4 filter and routing architecture

 HTTP L7 filter architecture

 First class HTTP/2 support

 gRPC support

 MongoDB and DynamoDB L7 support

www.leannet.eu

Istio

A service mesh control plane which uses Envoy as data plane
 Originally created by Google and IBM

 Written in Go

 Provides core features for:

 Traffic management

 Observability

 Security

Has four main components
 Pilot for managing and configuring the Envoy proxies

 Citadel for service-to-service and end-user authentication

 Galley for configuration validation, ingestion,
processing and distribution

www.leannet.eu

The Buzz Around Istio

www.leannet.eu

The Buzz Around Istio

www.leannet.eu

The Sidecar Problem

Node 1 Node 2 Node 3

Proxy

Proxy

Proxy

Proxy

Proxy

Proxy

Proxy

Proxy

Proxy

Proxy

Proxy

Proxy

Service Mesh Control Plane

 Dynamic service discovery
 Load balancing
 Health checks
 Timeouts
 Retries
 Circuit breakers

 Traffic encryption (mTLS)
 Fine-grained access control
 Access auditing
 Rate limiting
 Rewrites and redirects

 Consistent metrics
 Access logs
 Distributed tracing
 Fault injection

 Lots of resources
 Added latency
 Operational overhead
 HTTP focused

www.leannet.eu

The Buzz Around Istio: Ambient Mesh

www.leannet.eu

The Two Big Players

 Somewhat easy to install
 Hard to operate
 Heavy control plane
 Advanced data plane (Envoy)
 Has a built in ingress (and egress) controller (Envoy)
 Kiali as dashboard
 Monitoring:

 Service graph
 S2S latency
 Response codes
 Jaeger Tracing

 Advanced HTTP routing:
 Blue/Green
 Canary
 Dark launch, shadow

 Very easy to install
 Easy to operate
 Light control plane
 Very light data plane (in Rust)
 No ingress included
 Has a dashboard
 Monitoring:

 Service graph
 S2S latency
 Response codes
 No tracing

 Very basic HTTP routing:
 Blue/Green
 Canary
 No dark launch

www.leannet.eu

Other Players 1: Nginx Service Mesh

Lightweight and turnkey solution using Nginx Plus
 Created by the F5/Nginx team

 Free, but can require Nginx Plus Ingress licenses

 Enterprise support available

Features include
 Rate shaping, quality of service (QoS)

 Blue-green, A/B, Canary deployments

 Circuit breaking

 API gateway features

 Service identity, Zero trust

 mTLS enforcement

 Certificate lifecycle management

 Allowlist support for ingress and egress

 Per-service access control for east-west traffic

www.leannet.eu

Other Players 2: AWS App Mesh

AWS specific service mesh that makes it easy to monitor and control services
 Works with Amazon EC2, Amazon ECS, Amazon EKS, and AWS Fargate

 Envoy as dataplane

www.leannet.eu

Other Players 3: Open Service Mesh

OSM is a lightweight and extensible cloud native service mesh
 Originally created by Microsoft (supported by AKS)

 CNCF sandbox project

 Envoy as dataplane, control plane written in Go

 Configure via Service Mesh Interface (SMI)

Features include
 Easily and transparently configure traffic shifting

 Secure end-to-end communication by enabling mTLS

 Fine grained access control policies for services

 Observability and insights into application metrics for debugging and monitoring services

 Integrate with external certificate management services/solutions with a pluggable interface

 Onboard applications onto the mesh by enabling automatic sidecar injection of Envoy proxy

 Flexible enough to handle both simple and complex scenarios through SMI and Envoy XDS APIs

www.leannet.eu

Other Players 4: Service Mesh Interface

A standard interface for service meshes on Kubernetes
 A basic feature set for the most common service mesh use cases

 Flexibility to support new service mesh capabilities over time

 Space for the ecosystem to innovate with service mesh technology

Ecosystem
 Linkerd: ultralight service mesh

 Nginx Service Mesh: turnkey solution using Nginx Plus

 Open Service Mesh: lightweight and extensible cloud native service mesh

 Traefik Mesh: simpler service mesh

 Gloo Mesh: Multi-cluster service mesh management plane

 Meshery: the service mesh management plane

 Flagger: progressive delivery operator

 Argo Rollouts: advanced deployment & progressive delivery controller

 Istio*: connect, secure, control, observe

 Consul Connect*: service segmentation
* via adaptor

www.leannet.eu

Other Players 5: Even More Tools

www.leannet.eu

Other Players 6: Cilium Service Mesh with eBPF

www.leannet.eu

Other Players 7: Service Mesh vs. API Gateways

Many features of the Service Mesh and API Gateways seems overlapping
 Telemetry collection

 Distributed tracing

 Service discovery

 Load balancing

 TLS termination/origination

 JWT validation

 Request routing

 Traffic splitting

 Canary releasing

 Traffic shadowing

 Rate limiting

Good to read:
https://blog.christianposta.com/microservices/do-i-need-an-api-gateway-if-i-have-a-service-mesh/
https://konghq.com/blog/the-difference-between-api-gateways-and-service-mesh

Control the edge Control the cluster

https://blog.christianposta.com/microservices/do-i-need-an-api-gateway-if-i-have-a-service-mesh/
https://konghq.com/blog/the-difference-between-api-gateways-and-service-mesh

www.leannet.eu

Other Players 8: Kubernetes Gateway API

The Kubernetes Ingress resource seems to be limited for API Gateway use-cases

 Very similar CRDs appeared for ingress controllers (including service mesh ingresses)

 Ingress annotations are overloaded, and very vendor specific

Gateway API (currently in v1beta1 status):

 Standardize underlying route matching, traffic management, and service exposure

 Represent L4/L7 routing and traffic management through common core API resources

 Provide extensibility for more complex capabilities in a way that does not sacrifice the user experience of the
core API

gateway

www.leannet.eu

Other Players 9: Service Mesh Managers

Management plane that enables the adoption, operation, and management of service mesh

 Typical features:
 Lifecycle management (e.g. version upgrades)

 Multi-cluster management and hybrid (non-Kubernetes) deployments

 Multi-tenancy and self-service

 Enhanced security (e.g. access control, cert management)

 Created by Solo.io

 Supports only Istio

 Created by Layer5.io

 Many supported service mesh solutions

https://docs.meshery.io/concepts/architecture/adapters

www.leannet.eu

DEMO TIME

www.leannet.eu

Bookinfo Application

www.leannet.eu

Bookinfo Application

Nginx
Ingress

Controller

www.leannet.eu

Bookinfo Application

Istio
Ingress

Gateway

www.leannet.eu

Okay, But Should I Use a Service Mesh???

It depends…

Not a good reason:
 I’ve heard it’s cool since Google made this!

 Want to be cloud native so I must use this new stuff

 My boss told me…

But definitely use it if:
 You’re already mastering the basic Kubernetes abstractions, but need to move forward

 You have micro(ish)services environment, written in multiple languages, and you need consistent telemetry

 You need mTLS for every service-to-service communication

 You have a microservices environment where some service are failing, and you can’t figure out which one of them

 You need to apply more advance deployment patterns (e.g. canary, blue/green), since your current one is too slow

