
www.leannet.eu

Basics of Service Mesh

www.leannet.eu

Who am I?

Head of Cloud Native Competence Center @ adesso Hungary

 Consulting, training, implementing

 Cloud Native, Kubernetes, Microservices, DevOps

 Previously co-founder @ LeanNet

peter.megyesi@adesso.eu

twitter.com/M3gy0

linkedin.com/in/M3gy0

www.leannet.eu

What are Microservices?

Microservices architecture is software development form that structures an application as a collection of
loosely coupled services having bounded context, which implement business capabilities. Microservices
enable the continuous delivery/deployment of large, complex applications.

Monolithic software

 Vertically scalable

 Hard to maintain and evolve

 Very long build / test / release cycles

 Always fixing bugs

 Lack of innovation

Service Oriented
Architecture

Microservices

 Horizontally scalable

 Services are easy to maintain

 Very short build / test / release
cycles

 Easy to innovate

www.leannet.eu

This is not a Microservice Architecture!

Web Server App Server DB Server

www.leannet.eu

This is Getting There….

www.leannet.eu

But These are True Microservice Architectures!

Twitter Amazon Web Service

www.leannet.eu

But These are True Microservice Architectures!

www.leannet.eu

Monolith vs. Microservices?

Complex application
Easy networking

Easy applications (services)
Complex networking

The fallacies of distributed computing:
• The network is reliable
• Latency is zero
• Bandwidth is infinite
• The network is secure

• Topology doesn't change
• There is one administrator
• Transport cost is zero
• The network is homogeneous

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

www.leannet.eu

What is a Service Mesh?

Service Mesh is dedicated infrastructure layer
in a microservices environment

to consistently manage, monitor and control
the communication between services across

the entire application

www.leannet.eu

Evolution: LAMP to Web Scale

Apache

Apache

Apache

PHP

PHP

PHP

PHP

PHP

MySQL

MySQL

MySQL

Nginx

Nginx

Nginx

DB

DB

DB

SVC

SVC

SVC

SVC

SVC

www.leannet.eu

Evolution: Common Features in DevSecOps

 Dynamic service discovery
 Load balancing
 Health checks
 Timeouts
 Retries
 Circuit breakers

 Traffic encryption (mTLS)
 Fine-grained access control
 Access auditing
 Rate limiting
 Rewrites and redirects

 Consistent metrics
 Access logs
 Distributed tracing
 Fault injection

www.leannet.eu

Evolution: Shared Libraries to Service Mesh

Nginx

Nginx

Nginx

DB

DB

DB

SVC

SVC

SVC

SVC

SVC
Library

Examples for such fat libraries:
 Hystrix @ Netflix

 Stubby @ Google

 Finagle @ Twitter

Disadvantages of shared libraries:
 Have to be implemented in multiple languages

 If the library changes the entire service has to be redeployed

 Too tight involvement of dev teams

www.leannet.eu

Linkerd

A service mesh that adds reliability, security, and visibility to cloud native applications
 Official CNCF Project

 Originally created by Buoyant Inc. based on Finagle

 Written in JAVA

These are the dataplane components (proxies)

This is the control
plane that programs
the individual
dataplane proxies

namerd

www.leannet.eu

Sidecar Model in Container Environments

Disadvantages of per-node model
 Raises security concerns in multi-tenant environments (shared TLS secrets, common authentication, etc.)

 Can only be scaled vertically, not horizontally (give it more memory and CPU and it will handle more connection)

 Not optimized for container workloads

The sidecar model

 Put a proxy next to every container

 This is supported by the POD abstraction in Kubernetes

 Linkerd is considered to be too heavy for such environment!

Node 1 Node 2 Node 3

Proxy

Proxy

Proxy

Proxy

Proxy

Proxy

Proxy

Proxy

Proxy

Proxy

Proxy

Proxy

www.leannet.eu

Sidecar Unjection: Using the Mutating Webhook of the API Server

API
HTTP

handler

Authentication
Authorization

Mutating
admission

API request
Object

Schema
Validation

Validating
admission

Persisted to
etcd

Webhook Webhook Webhook

Happens on pod level if annotation is present
 Namespace
 Pod controller

 Deployment, ReplicaSet, DaemonSet, StatefulSet
 Pod itself

www.leannet.eu

Linkerd2

A novel service mesh that was specifically designed to work in Kubernetes

 Created by Buoyant, the same team who created Linkerd

 Data plane is written in Rust to be very fast and lightweight to sidecar operations (~5MB container size)

 Control plane is written in Go to work well in Kubernetes

 Can be deployed service-by-service (it’s not an all-or-nothing choice…)

www.leannet.eu

Envoy

Envoy is an open source edge and service proxy, designed for cloud-native applications
 Official CNCF Project

 Originally created by Lyft

 Written in C++

 Out of process architecture with advanced threading

 Best in class observability

 Rich APIs called xDS

Features include
 L3/L4 filter and routing architecture

 HTTP L7 filter architecture

 First class HTTP/2 support

 gRPC support

 MongoDB and DynamoDB L7 support

www.leannet.eu

Istio

A service mesh control plane which uses Envoy as data plane
 Originally created by Google and IBM

 Written in Go

 Provides core features for:

 Traffic management

 Observability

 Security

Has four main components
 Pilot for managing and configuring the Envoy proxies

 Citadel for service-to-service and end-user authentication

 Galley for configuration validation, ingestion,
processing and distribution

www.leannet.eu

The Buzz Around Istio

www.leannet.eu

The Buzz Around Istio

www.leannet.eu

The Sidecar Problem

Node 1 Node 2 Node 3

Proxy

Proxy

Proxy

Proxy

Proxy

Proxy

Proxy

Proxy

Proxy

Proxy

Proxy

Proxy

Service Mesh Control Plane

 Dynamic service discovery
 Load balancing
 Health checks
 Timeouts
 Retries
 Circuit breakers

 Traffic encryption (mTLS)
 Fine-grained access control
 Access auditing
 Rate limiting
 Rewrites and redirects

 Consistent metrics
 Access logs
 Distributed tracing
 Fault injection

 Lots of resources
 Added latency
 Operational overhead
 HTTP focused

www.leannet.eu

The Buzz Around Istio: Ambient Mesh

www.leannet.eu

The Two Big Players

 Somewhat easy to install
 Hard to operate
 Heavy control plane
 Advanced data plane (Envoy)
 Has a built in ingress (and egress) controller (Envoy)
 Kiali as dashboard
 Monitoring:

 Service graph
 S2S latency
 Response codes
 Jaeger Tracing

 Advanced HTTP routing:
 Blue/Green
 Canary
 Dark launch, shadow

 Very easy to install
 Easy to operate
 Light control plane
 Very light data plane (in Rust)
 No ingress included
 Has a dashboard
 Monitoring:

 Service graph
 S2S latency
 Response codes
 No tracing

 Very basic HTTP routing:
 Blue/Green
 Canary
 No dark launch

www.leannet.eu

Other Players 1: Nginx Service Mesh

Lightweight and turnkey solution using Nginx Plus
 Created by the F5/Nginx team

 Free, but can require Nginx Plus Ingress licenses

 Enterprise support available

Features include
 Rate shaping, quality of service (QoS)

 Blue-green, A/B, Canary deployments

 Circuit breaking

 API gateway features

 Service identity, Zero trust

 mTLS enforcement

 Certificate lifecycle management

 Allowlist support for ingress and egress

 Per-service access control for east-west traffic

www.leannet.eu

Other Players 2: AWS App Mesh

AWS specific service mesh that makes it easy to monitor and control services
 Works with Amazon EC2, Amazon ECS, Amazon EKS, and AWS Fargate

 Envoy as dataplane

www.leannet.eu

Other Players 3: Open Service Mesh

OSM is a lightweight and extensible cloud native service mesh
 Originally created by Microsoft (supported by AKS)

 CNCF sandbox project

 Envoy as dataplane, control plane written in Go

 Configure via Service Mesh Interface (SMI)

Features include
 Easily and transparently configure traffic shifting

 Secure end-to-end communication by enabling mTLS

 Fine grained access control policies for services

 Observability and insights into application metrics for debugging and monitoring services

 Integrate with external certificate management services/solutions with a pluggable interface

 Onboard applications onto the mesh by enabling automatic sidecar injection of Envoy proxy

 Flexible enough to handle both simple and complex scenarios through SMI and Envoy XDS APIs

www.leannet.eu

Other Players 4: Service Mesh Interface

A standard interface for service meshes on Kubernetes
 A basic feature set for the most common service mesh use cases

 Flexibility to support new service mesh capabilities over time

 Space for the ecosystem to innovate with service mesh technology

Ecosystem
 Linkerd: ultralight service mesh

 Nginx Service Mesh: turnkey solution using Nginx Plus

 Open Service Mesh: lightweight and extensible cloud native service mesh

 Traefik Mesh: simpler service mesh

 Gloo Mesh: Multi-cluster service mesh management plane

 Meshery: the service mesh management plane

 Flagger: progressive delivery operator

 Argo Rollouts: advanced deployment & progressive delivery controller

 Istio*: connect, secure, control, observe

 Consul Connect*: service segmentation
* via adaptor

www.leannet.eu

Other Players 5: Even More Tools 

www.leannet.eu

Other Players 6: Cilium Service Mesh with eBPF

www.leannet.eu

Other Players 7: Service Mesh vs. API Gateways

Many features of the Service Mesh and API Gateways seems overlapping
 Telemetry collection

 Distributed tracing

 Service discovery

 Load balancing

 TLS termination/origination

 JWT validation

 Request routing

 Traffic splitting

 Canary releasing

 Traffic shadowing

 Rate limiting

Good to read:
https://blog.christianposta.com/microservices/do-i-need-an-api-gateway-if-i-have-a-service-mesh/
https://konghq.com/blog/the-difference-between-api-gateways-and-service-mesh

Control the edge Control the cluster

https://blog.christianposta.com/microservices/do-i-need-an-api-gateway-if-i-have-a-service-mesh/
https://konghq.com/blog/the-difference-between-api-gateways-and-service-mesh

www.leannet.eu

Other Players 8: Kubernetes Gateway API

The Kubernetes Ingress resource seems to be limited for API Gateway use-cases

 Very similar CRDs appeared for ingress controllers (including service mesh ingresses)

 Ingress annotations are overloaded, and very vendor specific

Gateway API (currently in v1beta1 status):

 Standardize underlying route matching, traffic management, and service exposure

 Represent L4/L7 routing and traffic management through common core API resources

 Provide extensibility for more complex capabilities in a way that does not sacrifice the user experience of the
core API

gateway

www.leannet.eu

Other Players 9: Service Mesh Managers

Management plane that enables the adoption, operation, and management of service mesh

 Typical features:
 Lifecycle management (e.g. version upgrades)

 Multi-cluster management and hybrid (non-Kubernetes) deployments

 Multi-tenancy and self-service

 Enhanced security (e.g. access control, cert management)

 Created by Solo.io

 Supports only Istio

 Created by Layer5.io

 Many supported service mesh solutions

https://docs.meshery.io/concepts/architecture/adapters

www.leannet.eu

DEMO TIME

www.leannet.eu

Bookinfo Application

www.leannet.eu

Bookinfo Application

Nginx
Ingress

Controller

www.leannet.eu

Bookinfo Application

Istio
Ingress

Gateway

www.leannet.eu

Okay, But Should I Use a Service Mesh???

It depends…

Not a good reason:
 I’ve heard it’s cool since Google made this!

 Want to be cloud native so I must use this new stuff

 My boss told me…

But definitely use it if:
 You’re already mastering the basic Kubernetes abstractions, but need to move forward

 You have micro(ish)services environment, written in multiple languages, and you need consistent telemetry

 You need mTLS for every service-to-service communication

 You have a microservices environment where some service are failing, and you can’t figure out which one of them

 You need to apply more advance deployment patterns (e.g. canary, blue/green), since your current one is too slow

