CGD lemporal

INTRO WORKSHOP

AGENDA

e History

e Temporal
e Workshop

HISTORY

PROBLEM

Long running, complex interactions...

..1In distributed systems...

.with transactional characteristics.

EXAMPLE

ACL OfC\er 7 7)
700 , 7
: /)
4. / Y

‘—l_a/ arehouse

Pat/men‘t

i,

" _

NotiFication “

— |

NAIVE IMPLEMENTATION

placeOrder (o Order) {
warehouse.Reserveltems (0o.Items)

payment.ProcessPayment (o)
notifyBuyer (o, OrderPlaced)

saveOrder (0)

FAILURE

e,
O
/
w&\
LD

QUKD
9030 85,38
ll’\\ ’\5/0%»\
QKR
e,
%&/‘\Q\@VVQ\/&\\
.Ow./” % 4
NS
%

5

ZM\\‘/DINQ'/

Ploce order

FAILURE MODES

placeOrder (o Order) {
reserved, err := warehouse.Reserveltems (o.Items)
err != {

lreserved {
notifySeller (o, OrderFailed)

notifyBuyer (o, OrderFailed)

QUEUES FTW

EVENT CHOREOGRAPHY

Service Input Output

Shop PlaceOrder OrderPlaced
ItemsReserved/

Warehouse OrderPlaced j |
ltemReservationkec

| B OrderPaid/

Payment ItemsReserved |
PaymentFailled

OrderPaid/
Notification PaymentFailed/ BuyerNotified

TtemReservationFailed

ES
EU

U

Q

WITH

E

R

U

IL

FA

7

R
orde
(4

lowe

P

/‘\
s
R
(&2
Y

n
1O
Ficat

T

No

STATUS?

e User: what's going on with my order?
e Seller: iIncoming orders?

e Developer: debug a single execution?

CANCELLATION?

e User: I changed my mind, give me my money back!

e Payment failed: User failed to pay the order, cancel 1t!

S IVE ME MY | 7,
' V/
’ y , 7 / ”//,/ i
MONEY BACK! | o’
[} / i
Ll Ul ,, §/27 81874/ 84/ / Yy /)

STATE!

REINVENTING WHEELS

Amazon S3

Source: StackOverflow Blog

https://stackoverflow.blog/2020/11/23/the-macro-problem-with-microservices/

LESSONS LEARNT

e NoO one size fits all solution (yet)

e Fragile systems

e [.ack of orchestration

LACK OF ORCHESTRATION

e Fractured business processes

e Tight coupling between components
e Cancellations?

e Compensating actions?

e Additional interactions?

e Troubleshooting?

WE WANT THIS

placeOrder (o Order) {
warehouse.Reserveltems (0o.Items)

payment.ProcessPayment (o)
notifyBuyer (o, OrderPlaced)

saveOrder (0)

TEMPORAL

WHAT IS TEMPORAL?

e Temporal service

e Temporal SDK (insert your programming language here)

ORCHESTRATION AS CODE

e Write business logic as plain code

e Orchestration framework

e Durability and reliability out-of-the-box

CONCEPTS

o Workflow
e Activity
o Worker

Documentation

https://docs.temporal.io/concepts

WORKFLOW

e Definition

o [ype
e Execution

Documentation

https://docs.temporal.io/workflows

WORKFLOW DEFINITION

o aka. Workflow Function

e Encapsulates business logic

e Required to be deterministic

e Implemented 1n the Worker

Documentation

https://docs.temporal.io/workflows#workflow-definition

DETERMINISM

Output 1s based entirely on the input.

add(a, b) int {
resp := http.Get (fmt.Sprintf ("https://add.com/%d/%d", a, b))

decodeBody (resp.Body)

WORKFLOW TYPE

[dentifies a Workflow Definition (in the scope of a Task Queue)

Documentation

https://docs.temporal.io/workflows#workflow-type

WORKFLOW EXECUTION

e Durable and reliable execution of a Workflow Definition

e Runs once to completion

e Executed by the Worker

Documentation

https://docs.temporal.io/workflows#workflow-execution

ACTIVITY

e Definition

o [ype
e Execution

Documentation

https://docs.temporal.io/activities

ACTIVITY DEFINITION

e aka. Activity Function
e Building blocks for Workflow(Definition)s

e No restrictions on the code (1e. can be non-deterministic)

e Asynchronously executed

e Generally 1idempotent

Documentation

https://docs.temporal.io/activities#activity-definition

IDEMPOTENCE

Applying an operation multiple times does
not change the result beyond the initial
application.

ACTIVITY TYPE

[dentifies an Activity Definition (1n the scope of a Task Queue)

Documentation

https://docs.temporal.io/activities#activity-type

ACTIVITY EXECUTION

e Execution of an Activity Definition

e Can timeout
e Can be retried

e At least once execution guarantee

e Runs to completion or exhausts timeouts/retries

e Executed by the Worker

Documentation

https://docs.temporal.io/activities#activity-execution

Workflow Ac’tivi‘ty
Definition Definition
A
L @)O
2

Identifies 25 Identifies

Workflow Ac‘tivi‘tc/

Type Type

Refers to Refers to

Workflow \ Activity
Execution Execution

EXAMPLE

placeOrder (o Order) {
4, 1ltem := o.Iltems ({
err := temporal.ExecuteActivity ("warehouse.Reserveltem", 1item)

reserveltem(item OrderItem) error {
litems.IsAvailable (item.Quantity) ErrItemNotAvailable }

WORKER

e Implemented and operated by the user

e Executes Workflows and Activities

e [1stens to Task Queues

Documentation

https://docs.temporal.io/workers

User

Re,gistefs Workflows Starts
Starts Workp low and Activities Worker

—

.

00:00:01

OTHER NOTABLE CONCEPTS

e Namespace: unit of 1solation and replication domain

(analogous to a database)

e Task Queue: routing mechanism to different kinds of Workers

https://docs.temporal.io/namespaces
https://docs.temporal.io/tasks#task-queue

PREPARATION

PREPARE YOUR
ENVIRONMENT

1. Git, Make, etc.

2. Make sure you have the latest Go and Docker installed

https://golang.org/
https://www.docker.com/get-started

SETUP THE PROJECT

Checkout the tollowing repository:

https://github.com/sagikazarmark/temporal-intro-

workshop

Follow the instructions in the README.

https://github.com/sagikazarmark/temporal-intro-workshop

CHECK THE TOOLS

e UL http://127.0.0.1:8080
e CLLI. make shell

http://127.0.0.1:8080/

WORKFLOWS

e Write business logic as code
e MUST Dbe deterministic

e Parameters MUST be serializable

REMINDER

placeOrder (o Order) {
warehouse.Reserveltems (0o.Items)

payment.ProcessPayment (o)
notifyBuyer (o, OrderPlaced)

saveOrder (0)

EXAMPLE 1

Simple worktlow function.

EXAMPLE 2

e Input: number (integer)

e Qutput: tactorial of the number

EXAMPLE 3

Writing unit tests for a worktlow.

EXAMPLE 4

Write a test for Example 2.

DETERMINISM

Output value 1s based entirely on the input.

add(a, b) int {
resp := http.Get (fmt.Sprintf ("https://add.com/%d/%d", a, b))

decodeBody (resp.Body)

FORBIDDEN IN GO

e TIme functions time.Now, time.Sleep

e Goroutines
e Channels and selects

e [terating over maps

Use deterministic wrappers instead.

https://docs.temporal.io/application-development/foundations#workflow-logic-requirements

FORBIDDEN IN GENERAL

e Accessing external systems (usually over network)

e Accessing the filesystem

e Generating random values

EXAMPLE 5

Side-effects 1n a workflow:.

EXAMPLE 6

Communicating with a running workflow.

EXAMPLE 7/

Write a query handler (for your workflow from examples 2, 4)
that returns the current result in the loop.

Tip: Add sleep at the beginning of the loop so you have time to
query 1t using the CLIL

LOG-BASED EXECUTION

e Record a history of events

e Replay events to get to the current state

[User

[Temporal Cluster [Worker}

Start Workflow

|
|
>
|
|

S
a
|

<€

I
I
I
I
chedule Workflow Task :
:
I
I

Poll for Workflow Task

Receive Workflow Task > :

Execute Workflow function
<

Return Commands Workflow function
terminates

A

Execute Commands

N T

Record Events in the history

A

{User} {Temporal Cluster {Worker}

Temporal Cluster

Poll for Workflow Task

'y

[Until workflow completes]

Schedule Workflow Task

Receive Workflow Task

Return Commands

Execute Workflow function

<

Workflow function

AREEEEEE

Execute Commands

-

A

Temporal Cluster

Record Events in the history

terminates

{VVorker}

WORKFLOW REPLAY

RECAP

e Worktlows implement business logic

e They MUST be deterministic (due to log-based execution)

UNDISCUSSED TOPICS

e Child workflows

e Versioning

e Reset / Cancellation
e Search attributes
e SEeSSIons

e Cron

Documentation: Workflows

Documentation: Workflow development in Go

https://docs.temporal.io/workflows
https://docs.temporal.io/go/develop-workflows

ACTIVITIES

e Single task within a worktlow

e Can be non-deterministic

e API calls, database access, etc

e Just reqular code with reqgular tests

EXAMPLE 8

Simple activity function.

EXAMPLE 9

Activity retry.

EXAMPLE 10

Rewrite the factorial calculation (based on examples 2, 4, 7) as
an activity (with retries and timeouts):

e [t should always fail on the first attempt

e Rewrlte the tests so they continue to pass

UNDISCUSSED TOPICS

e Cancellation

e Async completion

e [.0ocal activities

Documentation. Activities

Documentation: Activity development in Go

https://docs.temporal.io/activities
https://docs.temporal.io/go/develop-activities

FURTHER READING

https://stackovertlow.blog/2020/11/23/the-macro-problem-with-
MICroservices/

https://stackoverflow.blog/2020/11/23/the-macro-problem-with-microservices/

Documentation: Concepts

Documentation: Glossary

https://docs.temporal.io/concepts
https://docs.temporal.io/glossary

Documentation: .

Developer's guide

https://docs.temporal.io/application-development/

Temporal learning materials

https://learn.temporal.io/

THE END

