
INTRO WORKSHOP

AGENDA
History

Temporal

Workshop

HISTORY

PROBLEM
Long running, complex interactions...

...in distributed systems...

...with transactional characteristics.

EXAMPLE

Place order
Shop

Warehouse

Payment

Notification

NAIVE IMPLEMENTATION
func placeOrder(o Order) {
 warehouse.ReserveItems(o.Items)

 payment.ProcessPayment(o)

 notifyBuyer(o, OrderPlaced)

 saveOrder(o)
}

FAILURE

Place order
Shop

Warehouse

Payment

Notification

FAILURE MODES
func placeOrder(o Order) {
 reserved, err := warehouse.ReserveItems(o.Items)
 if err != nil { // Warehouse service unavailable
 // Retry?
 }

 if !reserved { // Business error requiring user intervention
 notifySeller(o, OrderFailed)
 notifyBuyer(o, OrderFailed)

 return
 }

 // ...
}

QUEUES FTW

Place order
Shop

Warehouse

Payment

Notification

EVENT CHOREOGRAPHY
Service Input Output

Shop PlaceOrder* OrderPlaced

Warehouse OrderPlaced
ItemsReserved /

ItemReservationFa

Payment ItemsReserved
OrderPaid /

PaymentFailed

Noti�cation

OrderPaid /

PaymentFailed /

ItemReservationFailed
BuyerNotified

FAILURE WITH QUEUES

Place order
Shop

Warehouse

Payment

Notification

STATUS?
User: what's going on with my order?

Seller: incoming orders?

Developer: debug a single execution?

What's
Shop

???

happening?

CANCELLATION?
User: I changed my mind, give me my money back!

Payment failed: User failed to pay the order, cancel it!

GIVE ME MY
Shop

???
MONEY BACK!

STATE!

Place order
Shop

Warehouse

Payment

Notification

Database

REINVENTING WHEELS

Source: StackOver�ow Blog

https://stackoverflow.blog/2020/11/23/the-macro-problem-with-microservices/

LESSONS LEARNT
No one size �ts all solution (yet)

Fragile systems

Lack of orchestration

LACK OF ORCHESTRATION
Fractured business processes

Tight coupling between components

Cancellations?

Compensating actions?

Additional interactions?

Troubleshooting?

WE WANT THIS
func placeOrder(o Order) {
 warehouse.ReserveItems(o.Items)

 payment.ProcessPayment(o)

 notifyBuyer(o, OrderPlaced)

 saveOrder(o)
}

TEMPORAL

WHAT IS TEMPORAL?
Temporal service

Temporal SDK (insert your programming language here)

ORCHESTRATION AS CODE
Write business logic as plain code

Orchestration framework

Durability and reliability out-of-the-box

CONCEPTS
Work�ow

Activity

Worker

Documentation

https://docs.temporal.io/concepts

WORKFLOW
De�nition

Type

Execution

Documentation

https://docs.temporal.io/workflows

WORKFLOW DEFINITION
aka. Work�ow Function

Encapsulates business logic

Required to be deterministic

Implemented in the Worker

Documentation

https://docs.temporal.io/workflows#workflow-definition

DETERMINISM
Output is based entirely on the input.

func add(a, b int) int {
 return a + b
}

func add(a, b int) int {
 // This is not deterministic
 resp := http.Get(fmt.Sprintf("https://add.com/%d/%d", a, b))

 return decodeBody(resp.Body)
}

WORKFLOW TYPE
Identi�es a Work�ow De�nition (in the scope of a Task Queue)

Documentation

https://docs.temporal.io/workflows#workflow-type

WORKFLOW EXECUTION
Durable and reliable execution of a Work�ow De�nition

Runs once to completion

Executed by the Worker

Documentation

https://docs.temporal.io/workflows#workflow-execution

ACTIVITY
De�nition

Type

Execution

Documentation

https://docs.temporal.io/activities

ACTIVITY DEFINITION
aka. Activity Function

Building blocks for Work�ow(De�nition)s

No restrictions on the code (ie. can be non-deterministic)

Asynchronously executed

Generally idempotent

Documentation

https://docs.temporal.io/activities#activity-definition

IDEMPOTENCE
Applying an operation multiple times does

not change the result beyond the initial

application.

ACTIVITY TYPE
Identi�es an Activity De�nition (in the scope of a Task Queue)

Documentation

https://docs.temporal.io/activities#activity-type

ACTIVITY EXECUTION
Execution of an Activity De�nition

Can timeout

Can be retried

At least once execution guarantee

Runs to completion or exhausts timeouts/retries

Executed by the Worker

Documentation

https://docs.temporal.io/activities#activity-execution

Workflow
Definition

Workflow
Type

Workflow
Execution

Activity
Definition

Activity
Type

Activity
Execution

Refers to

Awaits

IdentifiesIdentifies

Refers toRefers to

EXAMPLE
// workflow type: "placeOrder"
func placeOrder(o Order) {
 for _, item := range o.Items {
 err := temporal.ExecuteActivity("warehouse.ReserveItem", item)
 // handle error
 }

 // ...
}

// activity type: "warehouse.ReserveItem"
func reserveItem(item OrderItem) error {
 if !items.IsAvailable(item.Quantity) { return ErrItemNotAvailable }

 // ..

 return nil
}

WORKER
Implemented and operated by the user

Executes Work�ows and Activities

Listens to Task Queues

Documentation

https://docs.temporal.io/workers

User

Temporal Worker

Task Queues

Database

00:00:01

Timers Pulls latest Tasks

Executes Workflows
and Activities

Returns Commands

Starts Workflow
Registers Workflows

and Activities
Starts
Worker

OTHER NOTABLE CONCEPTS
: unit of isolation and replication domain

(analogous to a database)

: routing mechanism to different kinds of Workers

Namespace

Task Queue

https://docs.temporal.io/namespaces
https://docs.temporal.io/tasks#task-queue

PREPARATION

PREPARE YOUR
ENVIRONMENT

1. Git, Make, etc.

2. Make sure you have the latest and installedGo Docker

https://golang.org/
https://www.docker.com/get-started

SETUP THE PROJECT
Checkout the following repository:

Follow the instructions in the README.

https://github.com/sagikazarmark/temporal-intro-
workshop

https://github.com/sagikazarmark/temporal-intro-workshop

CHECK THE TOOLS
UI:

CLI: make shell

http://127.0.0.1:8080

http://127.0.0.1:8080/

WORKFLOWS

Write business logic as code

MUST be deterministic

Parameters MUST be serializable

REMINDER
func placeOrder(o Order) {
 warehouse.ReserveItems(o.Items)

 payment.ProcessPayment(o)

 notifyBuyer(o, OrderPlaced)

 saveOrder(o)
}

EXAMPLE 1
Simple work�ow function.

EXAMPLE 2
Input: number (integer)

Output: factorial of the number

EXAMPLE 3
Writing unit tests for a work�ow.

EXAMPLE 4
Write a test for .Example 2

DETERMINISM
Output value is based entirely on the input.

func add(a, b int) int {
 return a + b
}

func add(a, b int) int {
 // This is not deterministic
 resp := http.Get(fmt.Sprintf("https://add.com/%d/%d", a, b))

 return decodeBody(resp.Body)
}

FORBIDDEN IN GO
Time functions time.Now, time.Sleep

Goroutines

Channels and selects

Iterating over maps

Use instead.deterministic wrappers

https://docs.temporal.io/application-development/foundations#workflow-logic-requirements

FORBIDDEN IN GENERAL
Accessing external systems (usually over network)

Accessing the �lesystem

Generating random values

EXAMPLE 5
Side-effects in a work�ow.

EXAMPLE 6
Communicating with a running work�ow.

EXAMPLE 7
Write a query handler (for your work�ow from examples 2, 4)

that returns the current result in the loop.

Tip: Add sleep at the beginning of the loop so you have time to

query it using the CLI.

LOG-BASED EXECUTION
Record a history of events

Replay events to get to the current state

User

User

Temporal Cluster

Temporal Cluster

Worker

Worker

Start Workflow

Schedule Workflow Task

Poll for Workflow Task

Receive Workflow Task

Execute Workflow function

Return Commands Workflow function
terminates

Execute Commands

Record Events in the history

Temporal Cluster

Temporal Cluster

Worker

Worker

l oop [U n t i l w o r k f l o w c o m p l e t e s]

Schedule Workflow Task

Poll for Workflow Task

Receive Workflow Task

Execute Workflow function

Return Commands Workflow function
terminates

Execute Commands

Record Events in the history

WORKFLOW REPLAY
func Workflow(ctx workflow.Context) error {
 foo := workflow.ExecuteActivity(ctx, "foo")

 workflow.Sleep(ctx, 10 * time.Second)

 workflow.ExecuteActivity(ctx, "bar", foo)
}

1
2
3
4
5
6
7

 foo := workflow.ExecuteActivity(ctx, "foo")
func Workflow(ctx workflow.Context) error {1

2
 3
 workflow.Sleep(ctx, 10 * time.Second)4
 5
 workflow.ExecuteActivity(ctx, "bar", foo)6
}7

 workflow.Sleep(ctx, 10 * time.Second)

func Workflow(ctx workflow.Context) error {1
 foo := workflow.ExecuteActivity(ctx, "foo")2
 3

4
 5
 workflow.ExecuteActivity(ctx, "bar", foo)6
}7
 workflow.ExecuteActivity(ctx, "bar", foo)

func Workflow(ctx workflow.Context) error {1
 foo := workflow.ExecuteActivity(ctx, "foo")2
 3
 workflow.Sleep(ctx, 10 * time.Second)4
 5

6
}7

RECAP
Work�ows implement business logic

They MUST be deterministic (due to log-based execution)

UNDISCUSSED TOPICS
Child work�ows

Versioning

Reset / Cancellation

Search attributes

Sessions

Cron

...

Documentation: Work�ows

Documentation: Work�ow development in Go

https://docs.temporal.io/workflows
https://docs.temporal.io/go/develop-workflows

ACTIVITIES

Single task within a work�ow

Can be non-deterministic

API calls, database access, etc

Just regular code with regular tests

EXAMPLE 8
Simple activity function.

EXAMPLE 9
Activity retry.

EXAMPLE 10
Rewrite the factorial calculation (based on examples 2, 4, 7) as

an activity (with retries and timeouts):

It should always fail on the �rst attempt

Rewrite the tests so they continue to pass

UNDISCUSSED TOPICS
Cancellation

Async completion

Local activities

Documentation: Activities

Documentation: Activity development in Go

https://docs.temporal.io/activities
https://docs.temporal.io/go/develop-activities

FURTHER READING

https://stackover�ow.blog/2020/11/23/the-macro-problem-with-

microservices/

https://stackoverflow.blog/2020/11/23/the-macro-problem-with-microservices/

Documentation: Concepts

Documentation: Glossary

https://docs.temporal.io/concepts
https://docs.temporal.io/glossary

Documentation: Developer's guide

https://docs.temporal.io/application-development/

Temporal learning materials

https://learn.temporal.io/

THE END

