
Richa’rd Kova’cs

Kubernetes envelope 
encryption on 
steroids, with 
Trousseau



Boring slide

● At work

○ Staff Kubernetes Engineer

○ @Ondat (former StorageOS)

○ Operator, Scheduler, Controller

and Automation

● At IT space

○ Many years of DevOps

○ Who counts years of Go, Java, and so on

■ (22, 9)

○ OSS devotee

○ Known as @mhmxs

https://www.ondat.io/
https://twitter.com/mhmxs


Ondat



Secrets are not secrets!
Encoding != Encryption



Solutions
● Leave as it is - done

○ Are you sure?
● Inject by sidecar

○ Features are unique
○ Migration == pain
○ Not transparent, manifests should be different across environments
○ Each pod has its own sidecar
○ Key-rotation usually solved
○ Secret change usually solved
○ Usually both environment variable and file are supported
○ Token is usually a Kubernetes object

● External secret / Injector
○ Features are unique
○ Extra Custom Resource maps secrets
○ Migration == should be pain (some supports multiple providers)
○ Not transparent, manifests should be different across environments
○ Key-rotation usually solved
○ Secret change not solved
○ Secret injection implementation dependent
○ Token is usually a Kubernetes object



Encryption At Rest
Envelope Encryption



Encryption At Rest
● Built-in solution to store encrypted data
● EncryptionConfiguration parsed by Kube 

API Server
● Any change requires API server restart
● Tokens are located on host filesystem
● Transparent
● Supports several resource types
● Rotation of keys isn’t included
● Migration needs manual action
● Encryption done by first provider
● Access Control via RBAC
● Secrets are still visible inside Kubernetes



Encryption At Rest





Trousseau



Trousseau



Trousseau - Benefits
● Solves Unix socket based problems by design
● Configuration change doesn’t need restart
● Admins can easily plug and unplug providers (migration still needed)
● It stores every secret in every provider - Easy “HA”, falls back if missing
● Supports different types of providers in the same time
● Bring Your Own Provider
● Multiple decryption methods: round-robin, fastest
● Key-rotation is simple and transparent
● More fault tolerant



Encryption At Rest - KMS V2

● Performance:
○ When starting a cluster, all resources are serially fetched and decrypted to fill the 

kube-apiserver cache
○ Support for KMS plugins that use a key hierarchy to reduce network requests made to the remote 

vault
● Key Rotation: Extra metadata is now tracked to allow a KMS plugin to communicate 

what key it is currently using with the kube-apiserver, allowing for rotation without API 
server restart

● Health Check & Status: A dedicated status API is used to communicate the health of 
the KMS plugin with the API server, eliminate proxy

● Observability: To improve observability, a new UID field is included in EncryptRequest 
and DecryptRequest of the v2 API

● v2alpha1 introduced at Kubernetes 1.25



Thank you




