
HODL off your axe
don’t start choppin’ up that poor monolith just yet

Máté Láng
HWSW microservices meetup, 2021 October

$ whoami

● Consultant, binhatch.com
● Previously

○ Cloud Infrastructure Team Lead @ Connatix
○ CTO @ SmartUp
○ Development Lead @ Endava

● Experience: Java, Go, AWS, Kubernetes,
Terraform

● Previously @ HWSW:
○ HWSW mobile! 2018, 2019
○ IaC HWSW! meetup, March 2021
○ HWSW Terraform IaC Course Trainer, 2021

Born with passion for tech...

… but here, also infected
with COVID (did not know
back then) 🦠🦠🦠
HWSW IaC meetup! (online)
2021 March

Microservices @
Monzo
https://monzo.com/blog/we-built-network-isolation-for-1-500-services

The five
weaknesses of
engineers

Attraction to
composable & modular
design

Weakness #1

Weakness #2

Attraction to elegant
complexity

Attraction to strategic
thinking and control

Weakness #3

Attraction to our
beloved tooling

Weakness #4

Attraction to
prestigious peers

Weakness #5

Attraction to
composable & modular
design

Weakness #1

Overly generic services

Weakness #2

Attraction to elegant
complexity

Overly complex implementation

Attraction to strategic
thinking and control

Weakness #3

Rigidity instead of agility

Attraction to our
beloved tooling

Weakness #4

Law of the hammer

Attraction to
prestigious peers

Weakness #5

Solution in search of a

problem

What if we
extracted
functionality
gradually when
appropriate?

“It’s not hard if you design it to be an
implementation detail. I mean, in the
end, a micro service is just a function
library called through a socket.
Eliminating the socket shouldn’t be
that hard.”

(Uncle Bob Martin, Twitter)
https://twitter.com/unclebobmartin/status/1442132963265818627

Shouldn’t be that hard. Why is it?

Tangled code is hard to extract

Layered architecture Hexagonal architecture

The hardest part. Your data.

● Splitting your problem domain into well defined bounded contexts is a hard
exercise

● ACID gives us the impression that we have complete control, but the real
world is not transactional and does not stop for a second

● Optimized data models help efficient manipulation, but are hard to maintain
● Distributed transactions are the root of all evil (embrace eventual consistency)
● In distributed systems things can go wrong, they most certainly will

developers.redhat.com/blog/2016/08/02/the-hardest-part-about-microservices-your-data

A balanced strategy

● Phase 1 - write clean code
● Phase 2 - write or extract to

microservices when it brings
advantage

○ well defined context
○ optimal data storage
○ operational (e.g scaling)
○ better suited programming language
○ organizational

● Phase 3 - rinse and repeat

A concrete
case study
from the buzzy
world of
blockchain

Building a distributed Tx Executor

● Blockchain Tx orders saved into Database
● Change Data Capture streams changes to data model
● CDC stream is sharded and competing consumers process events
● Changes describe a Finite State Machine
● At-least-once processing, any action can fail, and should be recoverable and

idempotent
● There are no compensating actions on blockchain
● Needs to be horizontally scalable and support high number of Txs

What the ___ is a nonce?

● Def: “how many transactions the signer account has sent previously”, in other
words, a non-repeating ordinal from an ever growing sequence for a given
account

● Determines order of txs
● Prevents replay attacks
● Troubles at scale:

○ Distributed or concurrent usage can mess up the sequence if uncoordinated
○ Gaps cause txs after unconfirmed nonce to hang until sequence is complete and continuous
○ Cap on max unconfirmed txs (currently 64 pending in tx pool) - sending more evicts the pool

See: https://medium.com/swlh/ethereum-series-understanding-nonce-3858194b39bf

Requirements for a distributed tracker

● Supports managing multiple parallel identities, called lineages to avoid
theoretical cap of 64 txs

● Each lineage has its own sequence of tickets, with a well defined ordinal
(nonce) which can be leased by a consumer

● Tolerates at-least-once consumers, by being idempotent for all operations
● Supports signalling the success of a tx (close a ticket)
● Supports signalling the non-retryable rejection of a tx (release)

○ In this case the released ticket has to be re-assigned ASAP to a subsequent tx to fill in
potential gaps

● Throttles fast consumers to avoid filling tx pools (backpressure)
● Can be consumed from any programming language
● Cloud native

Why implement as a microservice?

● Very specific problem, clear context boundaries, no domain pollution
● Isolated blast radius in case of bugs
● Easily testable in isolation
● Truly reusable in a wide range of projects depending on the same semantics
● Foreseeable scaling need and opportunity (64 pending tx limit / account)

Let’s imagine a service interface

 github.com/welthee/dinonce/blob/main/pkg/ticket/ticket_servicer.go

I see true perfection here

Meet “dinonce”

● OSS
● True “microservice”. Only 6 operations.
● GoLang
● Contract first OpenAPI 3.0
● Pluggable backend (currently PostgreSQL)
● Helm chart, deploys to k8s
● Independent component tests
● Terraform module to deploy to AWS EKS + RDS github.com/welthee/dinonce

What about the clients?

type TxContext struct {
 Reference string
 AccountAddr string
}

type NonceProvider interface {
 GetNonce(ctx *TxContext) (*big.Int, error)
 ReleaseNonce(ctx *TxContext) error
 CloseNonce(ctx *TxContext) error
}

The primary strategy of architecture is
the drawing of hard boundaries
between high level policy and low level
detail such that the high level policy is
entirely ignorant of the low level detail.

(Uncle Bob Martin, Twitter)
https://twitter.com/unclebobmartin/status/1443556534131245059

To sum it up...

Thank you for your
kind attention!

Máté Láng

github.com/matelang
linkedin.com/in/matelang

You should only do microservices if you...

● Know the problem domain very well
● Really, know the problem domain exceptionally well
● Are familiar with caveats of distributed computing and can embrace eventual

consistency
● Are comfortable building multiple optimized data models for your use case
● Have a good amount of automation or are comfortable adding it

○ Testing
○ Scaffolding
○ Dev Environments

● Can handle the added operational complexity
● Have good enough observability and good insights

