
Technical Report of MRG Effitas and CrySyS Lab

An independent test of APT

attack detection appliances

Gábor Ács-Kurucz1, Zoltán Balázs2, Boldizsár Bencsáth1 ,
Levente Buttyán1, Roland Kamarás1, Gábor Molnár1,
Gábor Vaspöri1

November 26, 2014.

1 CrySyS Lab, Budapest (www.crysys.hu)
2 MRG Effitas (www.mrg-effitas.com)

2

An independent test of APT
attack detection appliances

Introduction

The term Advanced Persistent Threat (APT) refers to a potential
attacker that has the capability and the intent to carry out advanced
attacks against specific high profile targets in order to compromise
their systems and maintain permanent control over them in a stealthy
manner. APT attacks often rely on new malware, which is not yet
known to and recognized by traditional anti-virus products. APT
attackers typically use spear phishing or watering hole techniques to
deliver the malware to victim computers where it is installed by
enticing the user to open the file containing the malware or the link
pointing to it. Installation of the malware may also involve exploiting
some known or publicly unknown vulnerability in the victim system,
or social engineering. Once the malware is installed, it may connect
to a remote Command & Control server, from which it can download
updates and additional modules to extend its functionality. In
addition, the malware may use rootkit techniques in order to remain
hidden and to provide permanent remote access to the victim system
for the attackers.

As traditional anti-virus products seem to be rather ineffective in
detecting new malware3, and hence, mitigating APT attacks, a range
of new solutions, specifically designed to detect APT attacks, have
appeared on the market in the recent past. These anti-APT tools
typically identify suspicious files on hosts and/or in the network
traffic, open those files in a sandbox environment on virtual machines
under various configuration settings, analyze the behavior produced
by the virtual machines, and try to identify anomalies that may
indicate the presence of a malware or an exploitation attempt. Well -
known examples for such APT attack detection tools include Cisco’s
SourceFire, Checkpoint, Damballa, Fidelis XPS, FireEye, Fortinet,
LastLine, Palo Alto’s WildFire, Trend Micro’s Deep Discovery and
Websense.

There is no doubt that these new tools are useful, which is also
underpinned by the fact that they have helped to identify several
zero-day exploits recently.4,5 However, determining the real

3 See the 2012 Imperva report on Assessing the Effectiveness of

Antivirus Solutions, available at
http://www.imperva.com/docs/HII_Assessing_the_Effectiveness_of_Anti

virus_Solutions.pdf (availability verified on 10/28/2014)
4 http://www.fireeye.com/blog/technical/cyber-exploits/2013/02/in-turn-

its-pdf-time.html (availability verified on 10/28/2014)

http://www.imperva.com/docs/HII_Assessing_the_Effectiveness_of_Antivirus_Solutions.pdf
http://www.imperva.com/docs/HII_Assessing_the_Effectiveness_of_Antivirus_Solutions.pdf
http://www.fireeye.com/blog/technical/cyber-exploits/2013/02/in-turn-its-pdf-time.html
http://www.fireeye.com/blog/technical/cyber-exploits/2013/02/in-turn-its-pdf-time.html

3

effectiveness of these tools is challenging, because measuring their
detection rate would require testing them with new, previously
unseen malware samples with characteristics similar to those of
advanced malware used by APT attackers. Developing such test
samples require special expertise and experience obtained either
through the development of advanced targeted malware or at least
through extensive analysis of known samples.

The difficulty of testing APT attack detection tools properly has
recently manifested itself in a lively dispute over a comparative test
performed by NSS Labs in 2013 and 2014. NSS Labs is an
independent testing firm specialized in testing security products, such
as Intrusion Prevention Systems. In 2013, they started to test APT
attack detection solutions, which they call Breach Detection Systems.
When they made their first results available to their clients in July
2013, FireEye, one of the key players in the anti-APT market, heavily
criticized the testing methodology used by NSS Labs and they
withdrew from further testing. FireEye claimed in a blog post6 that
NSS Labs poorly selected the samples which they used in the test, as
“the NSS sample set doesn’t include Unknowns, Complex Malware
(Encoded/Encrypted Exploit Code & Payload), and APTs .” While this
claim was refused by NSS Labs7, it seems to be true that most of the
NSS Labs samples were not custom developed for the purpose of the
test, but they were known samples or slightly modified versions of
known samples.

For this reason, we at MRG Effitas and CrySyS Lab decided to join our
forces and perform a test of leading APT attack detection tools using
custom developed samples8. MRG Effitas has a lot of experience in
testing anti-virus products, while the CrySyS Lab has a very good
understanding of APT attacks gained through the analysis of many
targeted malware campaigns (including Duqu, Flame, MiniDuke and
TeamSpy). Therefore, collaborating and bringing together our
complementary sets of expertise looked like a promising idea.

Unlike in the NSS Labs test, our goal was not to determine the
detection rates of different APT attack detection products, because
that would have required testing with a large set of custom
developed malware samples, which was not feasible to obtain within
the limited time frame and with the limited resources we had for the

5 http://www.fireeye.com/blog/technical/targeted-attack/2014/10/two-

targeted-attacks-two-new-zero-days.html (availability verified on
10/28/2014)
6 http://www.fireeye.com/blog/corporate/2014/04/real-world-vs-lab-
testing-the-fireeye-response-to-nss-labs-breach-detection-systems-

report.html (availability verified on 10/27/2014)
7 https://www.nsslabs.com/blog/dont-shoot-messenger (availability
verified on 10/27/2014)
8 We do not call them malware samples, as neither our intent was
malicious, nor the samples have any malicious functionalilty, but they

serve only testing purposes.

http://www.fireeye.com/blog/technical/targeted-attack/2014/10/two-targeted-attacks-two-new-zero-days.html
http://www.fireeye.com/blog/technical/targeted-attack/2014/10/two-targeted-attacks-two-new-zero-days.html
http://www.fireeye.com/blog/corporate/2014/04/real-world-vs-lab-testing-the-fireeye-response-to-nss-labs-breach-detection-systems-report.html
http://www.fireeye.com/blog/corporate/2014/04/real-world-vs-lab-testing-the-fireeye-response-to-nss-labs-breach-detection-systems-report.html
http://www.fireeye.com/blog/corporate/2014/04/real-world-vs-lab-testing-the-fireeye-response-to-nss-labs-breach-detection-systems-report.html
https://www.nsslabs.com/blog/dont-shoot-messenger

4

test. Instead, our goal was simply to implement some ideas we had
for bypassing cutting-edge APT attack detection tools without
actually being detected, and to test if our ideas really work in
practice.

We developed 4 custom samples in 2 weeks and without access to
any APT attack detection tools during the development, and then
later tested with these samples 5 APT attack detection solutions in
Q3 2014. All 5 tested products are well-established in the market;
however, we cannot mention vendor names in this public report . The
result of the test was alarming:

 one of our 4 custom samples bypassed all 5 products,
 another sample of the remaining 3 samples bypassed 3

products,
 only the two simplest samples have been detected by the

tested products, and even those triggered alarms with low
severity in some cases.

In this report, we describe our test methodology, including a brief
description of each sample we developed for the purpose of the test,
and we present the test results in more details. We decided to
publish this report for multiple reasons:

 First of all, we believe that our test was more appropriate for
evaluating the detection capabilities of APT attack detection
tools than the earlier NSS Labs test was, because we used
custom developed samples that resemble better the malware
used in APT attacks than the samples used in the NSS Labs
test. At least, we cannot be blamed that our test did not
“include Unknowns, Complex Malware (Encoded/Encrypted
Exploit Code & Payload), and APTs.”

 Second, some of the products that we tested seem to be
overestimated by the users who believe that those products
are silver bullets. This misconception may stem from the
products’ marketing strategies and outrageously high prices
that suggest that they are truly exceptional tools which will
catch every attack. The danger is that then users may believe
they do not anymore need to spend effort for internal
monitoring of their networks, log analysis, host based intrusion
detection, etc. We, on the other hand, have already
emphasized at multiple occasions that these products can and
will be bypassed by determined attackers. So users should
periodically ask the questions what if despite all the expensive
tools deployed, the attackers managed to successfully
compromise the system, and how to check whether a system
has already been compromised or not? Our test is a clear
proof that mainstream APT attack detection tools can be
bypassed (even with moderate effort), and if we could do that,
then APT attackers will also be able to do that, if they have
not done so yet.

5

 Third, we observed that some vendors of APT attack detection
tools are often reluctant to participate in tests that try to
evaluate the effectiveness of their products. On the one hand,
we understand their caution, as a test may lead to results
that, if published, may ruin their business. On the other hand,
we all know that the approach of security by obscurity has its
own pitfalls, and a false sense of security is actually worse
than not having any protection but being aware of that. So, by
publishing this report, we would like to encourage anti-APT
tool vendors to participate in independent tests more readily
and cooperatively, in order to have sufficient amount of
convincing results about their products, based on which well-
informed decisions can be made by the users.

 And last but not least, we believe that there are significant
differences in the APT detection capabilities of the tested
products, and users should be aware that not all vendors
provide the same detection rate. This is a well-known fact in
the traditional antivirus industry, and the same applies to the
novel APT detection tools. Thus, clients who plan to buy these
products should run proper tests either in-house or outsourced
before spending their money.

Test methodology and setup

Test setup

The network diagram in Figure 1 explains the logical topology of the
test setup. Before running the tests, vendors (or their representative
integrator companies) approved the test setup as fully functional.

Goal

All test samples had the objective of implementing traditional RAT
functionality, including remote interactive code execution, as well as
file download and upload. Remote communication was implemented
via back-connect C&C communication, where the maximum interval
between the polling requests was no more than 1 minute. Attackers
sometimes have higher limits.

The test

All tests were executed only once during the tests. In case of 2
tested products, the C&C traffic was alive for 30 minutes, and in case
of the remaining 3 tested products, it was alive for 24 hours. This is
because we only had a limited timeframe for the test for the first 2
products. During the test, we downloaded large files from the victim
client, and executed local commands, simulating real attackers. We
have not initiated any lateral movement.

6

Figure 1: Logical topology of the test setup

Test sample 1

This test case simulates attackers with limited knowledge and
resources. The malware delivery is a plain known Java Runtime
Environment exploit, with poor obfuscation. After successful
exploitation, the shell-code downloads and executes a publicly
available RAT (Remote Admin/Access Tool/Trojan). This RAT installer
is obfuscated with encryption, where the decryption routine brute-
forces the key. This decryption phase is resource intensive, and can
thwart sandbox analysis of the malware. After successful decryption,
the malware shows an error dialog box, which has to be accepted by
the user in order to run the real payload. The RAT payload connects
back through an encrypted TCP channel to the RAT server (RAT client
in RAT terminology). This test sample should have been detected by
all of the tools which provide zero-day malware detection. The use of
known exploits and publicly available RAT tools are common in APT
attacks, although this initial phase of the attack cannot be considered
as advanced. We used new domains and IP addresses with unknown
reputation in this attack.

Test sample 2

Test sample 2 simulates attackers with moderate knowledge and
resources. In this case, instead of Java exploits, the Java self -signed

Internet, Cloud

Victim 1 Victim 2

Different IP for every test case.

Test case Nr. 1 is 192.168.150.10

Test case Nr. 2 is 192.168.150.11

Test case Nr. 3 is 192.168.150.12

Test case Nr. 4 is 192.168.150.13

Router

Logical topology

Switch

Attacker servers

Breach detection

appliance

7

applet attack has been used. The applet that delivers the malware
has been generated with publicly available tools, without obfuscation.
Once the user accepts the execution of the signed applet, the
malware is dropped to the user’s temp folder and started. The
malware executes Metasploit’s reverse_http Meterprete r shellcode,
after initial anti-debug and anti-sandbox techniques. The anti-
sandbox technique used in this malware is in-house developed by
MRG Effitas and CrySys Lab, thus, it is not flagged by sandboxes as a
sandbox-detection activity. If the malware detects debugging or it
detects that it is running in a sandboxed environment, then it
immediately quits. If it detects that it is running in a user
workstation, it executes the shell-code, which connects to the
Metasploit server, and downloads the obfuscated stage2 metsrv.dll.
In this way, network appliances won’t be able to see the clear DLL on
the network. The DLL is loaded on the client side using reflective DLL
injection method. The HTTP based C&C protocol has been rewritten,
and it is encrypted between the client and server. We used new
domains and IP addresses with unknown reputation in this attack.
The self-signed applet may be suspicious for the detection tools, but
the automated dynamic analysis of the sample itself won’t reveal its
real functions.

Test sample 3

This test case simulates attackers with moderate knowledge and resources.
In this case, Microsoft Office Visual Basic macro code execution has been
used as a delivery method. After the macro code execution is allowed by the
user, the Visual Basic code executes the shellcode directly in the Office
process space. This shellcode is similar to the test 2 sample, as it is based
on a Metasploit’s reverse_http, and downloads the obfuscated stage2
metsrv.dll, thus network appliance won’t be able to see the clear DLL on the
network. The DLL is loaded on the client side using reflective DLL injection
method. The HTTP based C&C protocol has been rewritten, and it is
encrypted between the client and server. We used new domains and IP
addresses with unknown reputation in this attack. This attack can be
detected by the Visual Basic macro code easily, but from and end host point
of view, detection is hard, as there is no malware written to the disk.

Test sample 4 - BAB09

BAB0 is a custom designed sample written in C++ with a server side written
in PHP. It was designed to be as stealthy as possible, and utilizes multiple
methods to avoid detection. Actually, this test case simulates attackers with
moderate resources and some understanding of the state-of-the-art

9 Babo means hobbit in Hungarian. We called this sample Babo, as its

objective was to stealthily bypass all state-of-the-art defenses, while
actually being very simple, and this situation shows a parallel to the

story of the Lord of the Rings, where Frodo, the small hobbit managed
to bypass all defenses of the fearsome Sauron, the Lord of Mordor, and

reached Amon Amarth, where the One Ring was finally destroyed.

8

detection tools and how advanced malware work. For example, this can
simulate organized criminals when attacking high value targets. On the other
hand, nation state attackers surely have more resources and knowledge to
develop even stealthier malware.

The executable of BAB0 is downloaded by the victim as part of an HTML
page, where it is actually hidden in an image with steganography. Thus, the
executable never appears in clear in the network traffic. The downloaded
page also contains scripts that extract the executable from the image when
the user clicks on it. To avoid extracting the executable in a sandbox
environment on the detection tools, the website’s underlying HTML and
JavaScript code is misleading for an automated analysis environment, but it
has nothing special from a user’s perspective. On the other hand, the page
does not use CAPTCHA or other Turing test methods that would be unfair
from a testing perspective. The user has to simply click on something that
appears to be a download button.

Once the sample is running, it presents a decoy program to the user to
appear as an ordinary program. It does not try to modify the registry or any
configuration on the machine by itself. Persistence can be achieved later by
sending commands that add the executable to the appropriate registry
entries or making it start with the system in some other ways.

To hide the C&C network traffic, the client simulates a user clicking on links
in a web forum, and downloads full HTML pages with CSS style sheets and
images. The real C&C traffic is hidden inside these HTTP requests using data
hiding methods. In the tests, we hosted the C&C server on domains with
some positive reputation. It helped to simulate a fairly common scenario
when the malware author compromised domains without negative
reputation to host (part of) the C&C infrastructure. The command types that
can be sent to the client include: directory traversal, file download and
upload, and command execution.

Test results

The following table contains the test results. In favor of the tested
products, we marked as “detected” even those cases where the given
product detected the given sample with low confidence (or as a low
severity event). Detecting the sample means that at least one of the
following stages has been detected: exploit, malware download,
command and control channel.

Sample\Product Product 1 Product 2 Product 3 Product 4 Product 5

Test sample 1 detected detected detected detected detected

Test sample 2 detected detected detected detected detected

Test sample 3 detected bypassed bypassed detected bypassed

Test 4 - BAB0 bypassed bypassed bypassed bypassed bypassed

9

Conclusion

The main message of this work is that novel anti-APT tools can be bypassed
with moderate effort. If we were able to develop samples that were not
detected by these tools without actually having access to any of the tested
products during the development phase, then resourceful attackers who may
be able to buy these products will also be able to develop similar samples, or
even better ones. In addition, the test results also show that there are
differences between the different products in terms of their detection
capabilities, as some of the products detected our test sample 3, while
others did not. We cannot reveal in this report which products performed
better, but we can help organizations to test the products integrated in their
environment.

Next steps

We plan to develop more custom samples for using them in our
future tests. We are also thinking about creating a test environment
where zero-day browser exploits can be used efficiently. We have
already developed an in-house test environment, where known good
and known bad URLs, IP addresses, domains can be simulated, and
we may use this in our future tests.

Finally, we have a strong intention to publish BAB0 in the near
future. This may seem to be controversial, as making the details of
BAB0 publicly available can help attackers. We have a different
opinion: Powerful attackers have probably been using already similar
tricks, but apparently detection tools are not yet prepared to cope
with them. By publishing BAB0, we push anti-APT vendors to
strengthen their products, which will ultimately make the attackers’
job harder.

Contacts

For further information, please contact either Zoltan Balázs
(Zoltan.Balazs@mrg-effitas.com) or Levente Buttyán
(buttyan@crysys.hu). Please note that we cannot provide any vendor
specific information about the tests, but we can help organizations to
test the products integrated in their environment.

mailto:Zoltan.Balazs@mrg-effitas.com
mailto:buttyan@crysys.hu

