
Intel® Transactional
Synchronization Extensions

ARCS004

Ravi Rajwar, CPU Architect, Intel
Martin Dixon, Principal Engineer, Intel

2

Agenda

• The Synchronization Problem

• Intel® Transactional Synchronization Extensions

• Implementation Insights‡

• Software Enabling and Considerations

• Summary

‡ For the next generation Intel® microarchitecture (Haswell)

3

Agenda

• The Synchronization Problem

• Intel® Transactional Synchronization Extensions

• Implementation Insights‡

• Software Enabling and Considerations

• Summary

‡ For the next generation Intel® microarchitecture (Haswell)

4

Hard to Write Fast and Correct Multi-Threaded Code

Difficulty of Software Development

Identify concurrency

(algorithmic, manual…)

Manage concurrency

(locks, …)

Correctness Performance

5

Bob and Alice saw A as $100. Locks prevent such data races

The Need for Synchronization

Alice wants $50 from A
• A was $100, A is now $50

Bob wants $60 from A
• A was $100, A is now $40

A should be -10

use lock

A $100 A $100

Lock

Alice wants $50 from A
 Alice locks table

 A was $100, A is now $50

Bob wants $60 from A
 Bob waits till lock release

 A was $50, Insufficient funds

Developer

Table

6

Such Tuning is Time Consuming and Error Prone

Lock Granularity Optimization

A $100

B $200

A $100

B $200

Lock

Developer

Alice withdraws $20 from A

• Alice locks table

Bob wants $30 from B

• Waits for Alice to free table

Alice withdraws $20 from A

• Alice locks A

Bob wants $30 from B

• Bob locks B

Coarse Grain Locking
(lock per table)

Lock

Lock

Lock

Lock

Lock

Lock

Fine Grain Locking
(lock per entry)

7

Complexity of Fine Grain Locking

Expensive and Difficult to Debug Millions of Lines of Code

Alice transfers $20 from A to B

• Alice locks A and locks B

Performs transfer

• Alice unlocks A and unlocks B

A $100

B $200

Lock

Lock

Lock

Lock

Lock

Lock

A $100

B $200

Lock

Lock

Lock

Lock

Lock

Lock

Alice transfers
$20 from A to B

Locks A

Cannot lock B

Bob transfers
$50 from B to A

Locks B

Cannot lock A

8

What We Really Want…

Lock Elision: Fine Grain Behavior at Coarse Grain Effort

• Developer uses coarse grain lock

• Hardware elides the lock to expose concurrency

– Alice and Bob don’t serialize on the lock

– Hardware automatically detects real data conflicts

Developer Effort

A $100

B $200

C $200

Lock

Lock

Lock

Lock

Lock

Lock

Hardware

Program Behavior

A $100

B $200

C $200

Lock

Coarse grain locking effort Fine grain locking behavior

9

Benefit of Lock Elision

Exposes Concurrency & Eliminates Unnecessary Communication

T
im

e

T0 T1 T2 T3 T0 T1 T2 T3

Concurrent execution
No lock transfer latencies

Lock transfer latencies
Serialized execution

Reducing lock
instruction latencies

insufficient

10

Agenda

• The Synchronization Problem

• Intel® Transactional Synchronization Extensions

• Implementation Insights‡

• Software Enabling and Considerations

• Summary

‡ For the next generation Intel® microarchitecture (Haswell)

11

Transactional Synchronization

• Hardware support to enable lock elision

– Focus on lock granularity optimizations

– Fine grain performance at coarse grain effort

• Intel® TSX: Instruction set extensions for IA‡

– Transactionally execute lock-protected critical sections

– Execute without acquiring lock expose hidden concurrency

– Hardware manages transactional updates – All or None

 Other threads can’t observe intermediate transactional updates

 If lock elision cannot succeed, restart execution & acquire lock

Intel® TSX Exposes Concurrency through Lock Elision

Intel® Transactional Synchronization Extensions (Intel® TSX)

‡Intel® Architecture Instruction Set Extensions Programming Reference (http://software.intel.com/file/41604)

12

A Canonical Intel® TSX Execution

No Serialization and No Communication if No Data Conflicts

Lock: Free

Hash Table

Thread 1 Thread 2

Acquire Acquire

A

Critical
section

B

Critical
section

Release

Release

Lock remains
free throughout

Intel® Transactional Synchronization Extensions (Intel® TSX)

13

Intel® TSX Interfaces for Lock Elision

• Hardware Lock Elision (HLE) – XACQUIRE/XRELEASE

– Software uses legacy compatible hints to identify critical section.
Hints ignored on hardware without TSX

– Hardware support to execute transactionally without acquiring lock

– Abort causes a re-execution without elision

– Hardware manages all architectural state

• Restricted Transactional Memory (RTM) – XBEGIN/XEND

– Software uses new instructions to specify critical sections

– Similar to HLE but flexible interface for software to do lock elision

– Abort transfers control to target specified by XBEGIN operand

– Abort information returned in a general purpose register (EAX)

• XTEST and XABORT – Additional instructions

 Flexible and Easy To Use

Intel® Transactional Synchronization Extensions (Intel® TSX)

14

Intel® TSX Interface: HLE

Legacy Compatible Enabling Within Libraries

acquire_lock (mutex)

; do critical section

; function calls,

; memory operations, …

release_lock (mutex)

 mov eax, 1

Try: lock xchg mutex, eax

 cmp eax, 0

 jz Success

Spin: pause

 cmp mutex, 1

 jz Spin

 jmp Try

mov mutex, 0

 mov eax, 1

Try: xacquire lock xchg mutex, eax

 cmp eax, 0

 jz Success

Spin: pause

 cmp mutex, 1

 jz Spin

 jmp Try

xrelease mov mutex, 0

Application

Library
If lock not free, execution
will abort either early (if
pause used) or when lock
gets free

Enter HLE execution

Commit HLE execution

Intel® Transactional Synchronization Extensions (Intel® TSX)

Code example for illustration purpose only

15

Intel® TSX Interface: RTM

Lock Elision using RTM Also Enabled Inside Libraries

 mov eax, 1

Try: lock xchg mutex, eax

 cmp eax, 0

 jz Success

Spin: pause

 cmp mutex, 1

 jz Spin

 jmp Try

mov mutex, 0

Augment conventional lock
libraries to support RTM-

based Lock Elision

Intel® Transactional Synchronization Extensions (Intel® TSX)

acquire_lock (mutex)

; do critical section

; function calls,

; memory operations, …

release_lock (mutex)

Application

Library

Code example for illustration purpose only

16

Intel® TSX Interface: RTM

 mov eax, 1

Try: lock xchg mutex, eax

 cmp eax, 0

 jz Success

Spin: pause

 cmp mutex, 1

 jz Spin

 jmp Try

mov mutex, 0

Retry: xbegin Abort

 cmp mutex, 0

 jz Success

 xabort $0xff

Abort:

 … check EAX and do retry policy

 … actually acquire lock or wait

 … to retry.

 …

cmp mutex, 0

jnz release_lock

xend

Intel® Transactional Synchronization Extensions (Intel® TSX)

acquire_lock (mutex)

; do critical section

; function calls,

; memory operations, …

release_lock (mutex)

acquire_lock (mutex)

release_lock (mutex)

Code example for illustration purpose only

17

Intel® TSX Interface: RTM

Intel® Transactional Synchronization Extensions (Intel® TSX)

… Enter RTM execution, Abort is fallback path

… Check to see if mutex is free

… Abort transactional execution if mutex busy

… Fallback path in software

… Retry RTM or explicitly acquire mutex

… Mutex not free was not an RTM execution

… Commit RTM execution

Code example for illustration purpose only

Retry: xbegin Abort

 cmp mutex, 0

 jz Success

 xabort $0xff

Abort:

 … check EAX and do retry policy

 … actually acquire lock or wait

 … to retry.

 …

cmp mutex, 0

jnz release_lock

xend

acquire_lock (mutex)

; do critical section

; function calls,

; memory operations, …

release_lock (mutex)

18

Intel® TSX Usage Environment

• Available in all x86 modes

• Some instructions and events may cause aborts

– Uncommon instructions, interrupts, faults, etc.

– Always functionally safe to use any instruction

• Software must provide a non-transactional path

– HLE: Same software code path executed without elision

– RTM: Software fallback handler must provide alternate path

Architected for Typical Lock Elision Usage

Intel® Transactional Synchronization Extensions (Intel® TSX)

19

Agenda

• The Synchronization Problem

• Intel® Transactional Synchronization Extensions

• Implementation Insights‡

• Software Enabling and Considerations

• Summary

‡ For the next generation Intel® microarchitecture (Haswell)

20

Focus: Simplify Developer Enabling

• Easy to start using Intel® TSX

– Simple and clean instruction set minimizes software changes

 Can be hidden in software synchronization libraries

 Supports nesting critical sections

– Minimizes implementation-specific causes for aborts

 Micro-architectural events such as branch mispredicts, cache
misses, TLB misses, etc. do not cause aborts

 No explicit limit on number of instructions inside critical section

• Simplify decision process of when to use

– Designed to support typical critical sections

– Competitive to typical uncontended critical sections

Intel® Transactional Synchronization Extensions (Intel® TSX)

Implementation specific to the next general Intel® microarchitecture code name Haswell

Developer Focused Architecture and Design

21

Intel® TSX Operational Aspects

1. Identify and elide

– Identify critical section, start transactional execution

– Elide locks, keep them available to other threads

2. Execute transactionally

– Manage all transactional state updates

3. Detect conflicting memory accesses

– Track data accesses, check for conflicts from other threads

4. Abort or commit

– Abort discards all transactional updates

– Commit makes transactional updates instantaneously visible

Intel® Transactional Synchronization Extensions (Intel® TSX)

Implementation specific to the next general Intel® microarchitecture code name Haswell

22

Identify and Elide: HLE

Hardware Automatically Manages Elided Locks

• Hardware executes XACQUIRE hint
• Hardware elides acquire write to mutex
• Hardware starts transactional execution

xacquire lock cmpxchg mutex, ebx
mutex: 0

mutex: 1

• Reading mutex in critical section sees last value written (1)
• Other threads reading see free value (0)

• Hardware executes XRELEASE hint
• Hardware elides release write to mutex
• Hardware commits transactional execution

0

0

mutex value

 others self

mutex: 1

mutex: 0

0

0

mov ecx, mutex

xrelease mov mutex, 0

Implementation specific to the next general Intel® microarchitecture code name Haswell

23

Identify and Elide: HLE

• Hardware support to elide multiple locks

– Hardware elision buffer manages actively elided locks

– XACQUIRE/XRELEASE allocate/free elision buffer entries

– Skips elision without aborting if no free entry available

• Hardware treats XACQUIRE/XRELEASE as hints

– Functionally correct even if hints used improperly

– Hardware checks if locks meet requirements for elision

– May expose latent bugs and incorrect timing assumptions

Hardware Management of Elision Enables Ease of Use

Implementation specific to the next general Intel® microarchitecture code name Haswell

24

RTM Provides Increased Flexibility for Software

Identify and Elide: RTM

• Hardware executes XBEGIN

• Hardware starts transactional execution
• Software checks for a free mutex, skips acquire

xbegin <fallback_path>
mutex: 0

mutex: 0

• Reading mutex in critical section sees 0
• Other threads reading see free value (0)

• Hardware executes XEND
• Hardware commits transactional execution

0

0

mutex: 0

mutex: 0

0

0

mov ecx, mutex

xend

Implementation specific to the next general Intel® microarchitecture code name Haswell

 others self

mutex value

25

Execute Transactionally

• State updated during transactional execution

– State includes registers and memory

– Hardware recovers register and memory state on aborts

• Hardware manages all transactional updates

– Other threads cannot observe any intermediate updates

– If lock elision cannot succeed, hardware restarts execution

– Hardware discards all intermediate updates prior to restart

Software Does Not Worry About State Recovery

Implementation specific to the next general Intel® microarchitecture code name Haswell

26

Execute Transactionally – Memory

• Buffering memory writes

– Hardware uses L1 cache to buffer transactional writes

 Writes not visible to other threads until after commit

 Eviction of transactionally written line causes abort

– Buffering at cache line granularity

• Sufficient buffering for typical critical sections

– Cache associativity can occasionally be a limit

– Software always provides fallback path in case of aborts

Hardware Manages All Transactional Writes

Implementation specific to the next general Intel® microarchitecture code name Haswell

27

Detect Conflicts

• Read and write addresses for conflict checking

– Tracked at cache line granularity using physical address

– L1 cache tracks addresses written to in transactional region

– L1 cache tracks addresses read from in transactional region

 Cache may evict address without loss of tracking

• Data conflicts

– Occurs if at least one request is doing a write

– Detected at cache line granularity

– Detected using existing cache coherence protocol

– Abort when conflicting access detected

Hardware Automatically Detects Conflicting Accesses

Implementation specific to the next general Intel® microarchitecture code name Haswell

28

Abort or Commit

• Transactional abort

– Occurs when abort condition is detected

– Hardware discards all transactional updates

• Transactional commit

– Hardware makes transactional updates visible instantaneously

– No cross-thread/core/socket coordination required

No Global Communication for Commit and Abort

Implementation specific to the next general Intel® microarchitecture code name Haswell

29

Agenda

• The Synchronization Problem

• Intel® Transactional Synchronization Extensions

• Implementation Insights‡

• Software Enabling and Considerations

• Summary

‡ For the next generation Intel® microarchitecture (Haswell)

30

Software

Enable

Profile

Tune

Architected for enabling ease

Extensive performance monitoring
and

profiling support

Easy to pin-point problem spots
Low touch changes

31

Software Enabling

• Doesn’t need operating system changes to use

• Compiler support through intrinsics and inline assembly

– Intel® Compiler (ICC) (v13.0)

– GCC (v4.8)

– Microsoft* VS2012

• Various managed runtimes

– Enabling inside runtime, hidden from application developer

• Changes can be localized to libraries

– Augment existing lock library to support Intel® TSX-based elision

– Dynamic linking no need to recompile

 Example: Linux GLIBC for pthreads (rtm-2.17 branch)

Easy to Get Started with Intel® TSX

Intel® Transactional Synchronization Extensions (Intel® TSX)

32

Profiling

• Extensive support for performance monitoring

• Performance Counters

– Count various Intel® TSX specific events

– Count events within transactional regions

– Gives first order look into transactional region characteristics

• Performance Profiling

– Extensions to Precise Event Based Sampling (PEBS)

– Allows detailed profiling of transactional aborts

 Includes cycles in aborted transactional regions

See Intel Software Developer Manual for More Details

Intel® Transactional Synchronization Extensions (Intel® TSX)

33

Software Considerations

• Good coding practices will also help Intel® TSX

– Avoid false or inadvertent sharing

– Avoid timing based synchronization

• Most common locks are already elision friendly

– Some locks need effort to make them elision friendly

– RTM provides improved flexibility

• Not everything can or should use Intel® TSX

• Intel® TSX is not a magic bullet

Watch for the Programmer Optimization Guide

Intel® Transactional Synchronization Extensions (Intel® TSX)

34

Agenda

• The Synchronization Problem

• Intel® Transactional Synchronization Extensions

• Implementation Insights‡

• Software Enabling and Considerations

• Summary

‡ For the next generation Intel® microarchitecture (Haswell)

35

Applying Intel® TSX

s
c
a
li
n
g

Threads

s
c
a
li
n
g

Threads

Application with
Coarse Grain Lock

Application re-written
with Finer Grain Locks

An example of secondary benefits
of Intel® TSX

Coarse Grain Lock

Coarse Grain Lock
+ Intel® TSX

Fine Grain Locks

Fine Grain Locks
+ Intel® TSX

Fine Grain Behavior at Coarse Grain Effort

Intel® Transactional Synchronization Extensions (Intel® TSX)

36

Intel® TSX Can Enable Simpler Scalable Algorithms

Enabling Simpler Algorithms

Lock-Free Algorithm

• Don’t use critical section locks

• Developer manages concurrency

• Very difficult to get correct & optimize

– Constrain data structure selection

– Highly contended atomic operations

State of the art lock-free algorithm

O
p
s
/s

e
c

Threads

O
p
s
/s

e
c

Threads

TSX lock based algorithm
Lock-Based + Intel® TSX

• Use critical section locks for ease

• Let hardware extract concurrency

• Enables algorithm simplification

– Flexible data structure selection

– Equivalent data structure lock-free
algorithm very hard to verify

Real World Example

Intel® Transactional Synchronization Extensions (Intel® TSX)

37

Intel® TSX Summary

• Improves existing synchronization

– Lock-based critical sections

– Goes beyond latency reduction and focuses on serialization

• Exposes hidden concurrency

– Coarse grain effort by developer

– Finer grain behavior by hardware

• Architected for

– Typical concurrency use-case with lock elision

– Simple enabling and ease of use

Think About How It Helps You and Other Novel Usages

Intel® Transactional Synchronization Extensions (Intel® TSX)

38

Legal Disclaimer
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
• A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in

personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL
APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND
THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES
AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY,
PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL
OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF
ITS PARTS.

• Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The
information here is subject to change without notice. Do not finalize a design with this information.

• The products described in this document may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

• Intel product plans in this presentation do not constitute Intel plan of record product roadmaps. Please contact your Intel
representative to obtain Intel's current plan of record product roadmaps.

• Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor
family, not across different processor families. Go to: http://www.intel.com/products/processor_number.

• Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
• Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be

obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm
• Haswell and other code names featured are used internally within Intel to identify products that are in development and not yet

publicly announced for release. Customers, licensees and other third parties are not authorized by Intel to use code names in
advertising, promotion or marketing of any product or services and any such use of Intel's internal code names is at the sole
risk of the user

• Intel, Sponsors of Tomorrow, Ultrabook and the Intel logo are trademarks of Intel Corporation in the United States and other
countries.

• *Other names and brands may be claimed as the property of others.
• Copyright ©2012 Intel Corporation.

http://www.intel.com/design/literature.htm

39

Optimization Disclaimer

Intel's compilers may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with
Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the
applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

40

Risk Factors
The above statements and any others in this document that refer to plans and expectations for the second quarter, the year and
the future are forward-looking statements that involve a number of risks and uncertainties. Words such as “anticipates,” “expects,”
“intends,” “plans,” “believes,” “seeks,” “estimates,” “may,” “will,” “should” and their variations identify forward-looking statements.
Statements that refer to or are based on projections, uncertain events or assumptions also identify forward-looking statements.
Many factors could affect Intel’s actual results, and variances from Intel’s current expectations regarding such factors could cause
actual results to differ materially from those expressed in these forward-looking statements. Intel presently considers the following
to be the important factors that could cause actual results to differ materially from the company’s expectations. Demand could be
different from Intel's expectations due to factors including changes in business and economic conditions, including supply
constraints and other disruptions affecting customers; customer acceptance of Intel’s and competitors’ products; changes in
customer order patterns including order cancellations; and changes in the level of inventory at customers. Uncertainty in global
economic and financial conditions poses a risk that consumers and businesses may defer purchases in response to negative
financial events, which could negatively affect product demand and other related matters. Intel operates in intensely competitive
industries that are characterized by a high percentage of costs that are fixed or difficult to reduce in the short term and product
demand that is highly variable and difficult to forecast. Revenue and the gross margin percentage are affected by the timing of Intel
product introductions and the demand for and market acceptance of Intel's products; actions taken by Intel's competitors, including
product offerings and introductions, marketing programs and pricing pressures and Intel’s response to such actions; and Intel’s
ability to respond quickly to technological developments and to incorporate new features into its products. Intel is in the process of
transitioning to its next generation of products on 22nm process technology, and there could be execution and timing issues
associated with these changes, including products defects and errata and lower than anticipated manufacturing yields. The gross
margin percentage could vary significantly from expectations based on capacity utilization; variations in inventory valuation,
including variations related to the timing of qualifying products for sale; changes in revenue levels; segment product mix; the
timing and execution of the manufacturing ramp and associated costs; start-up costs; excess or obsolete inventory; changes in unit
costs; defects or disruptions in the supply of materials or resources; product manufacturing quality/yields; and impairments of long-
lived assets, including manufacturing, assembly/test and intangible assets. The majority of Intel’s non-marketable equity
investment portfolio balance is concentrated in companies in the flash memory market segment, and declines in this market
segment or changes in management’s plans with respect to Intel’s investments in this market segment could result in significant
impairment charges, impacting restructuring charges as well as gains/losses on equity investments and interest and other. Intel's
results could be affected by adverse economic, social, political and physical/infrastructure conditions in countries where Intel, its
customers or its suppliers operate, including military conflict and other security risks, natural disasters, infrastructure disruptions,
health concerns and fluctuations in currency exchange rates. Expenses, particularly certain marketing and compensation expenses,
as well as restructuring and asset impairment charges, vary depending on the level of demand for Intel's products and the level of
revenue and profits. Intel’s results could be affected by the timing of closing of acquisitions and divestitures. Intel's results could be
affected by adverse effects associated with product defects and errata (deviations from published specifications), and by litigation or
regulatory matters involving intellectual property, stockholder, consumer, antitrust, disclosure and other issues, such as the
litigation and regulatory matters described in Intel's SEC reports. An unfavorable ruling could include monetary damages or an
injunction prohibiting Intel from manufacturing or selling one or more products, precluding particular business practices, impacting
Intel’s ability to design its products, or requiring other remedies such as compulsory licensing of intellectual property. A detailed
discussion of these and other factors that could affect Intel’s results is included in Intel’s SEC filings, including the company’s most
recent Form 10-Q, Form 10-K and earnings release.

Rev. 5/4/12

