
Android and Flux: It’s a match!

Attila Polacsek

Senior Android Developer | Supercharge

INTRO

INTRO

WHAT IS FLUX?

What is FLUX?
● Application architecture

● Pattern, not a framework

● Created by Facebook as a

successor of client-side MVC

● Based on unidirectional data flow 

WHAT IS FLUX?

Action Controller View

View

View

View

View

View

Model

Model

Model

Model

Model

Model

WHAT IS FLUX?

MVC Architecture

Action Dispatcher Store View Action

Action

Action

Action

Action

Action

Action

Action

Action

View

View

View

View

View

View

Store

e.g. touch events
e.g. push notification

via FCM

WHAT IS FLUX?

FLUX Architecture

WHAT IS FLUX?

MVC Architecture

FLUX Architecture

WHAT IS FLUX?

WHAT IS FLUX?

COMPONENTS
● Store

● Action

● Dispatcher

● View 

WHAT IS FLUX?

Action Dispatcher Store View

Action

STORE
● Holds the application data

● Immutable from the outside

● Produces a change event 

 

WHAT IS FLUX?

Action Dispatcher Store View

Action

● Actions data objects

● They define the internal API

● Action Creators are methods

● Send action to dispatcher 

 
 

WHAT IS FLUX?

Action Dispatcher Store View

Action

ACTION

DISPATCHER
● Receives all actions

● Broadcast them to stores

● Invoke callbacks in specific order 

 
 

WHAT IS FLUX?

Action Dispatcher Store View

Action

// Facebook's own example for waitFor:
CityStore.dispatchToken = flightDispatcher.register(function(payload) {
 if (payload.actionType === 'country-update') {
 // `CountryStore.country` may not be updated.
 flightDispatcher.waitFor([CountryStore.dispatchToken]);
 // `CountryStore.country` is now guaranteed to be updated.

 // Select the default city for the new country
 CityStore.city = getDefaultCityForCountry(CountryStore.country);
 }
});

WHAT IS FLUX?

CONS
● All UI state is handled in stores

● Stores are too dependent

● Dispatcher is everywhere

● Not cancelable 

 
 

WHAT IS FLUX?

WHAT IS FLUX?

HOW WE IMPLEMENTED IT

On top of RxJava2

SCFlux
● Implemented on top of RxJava2

● Dependencies between stores

are looser

● State persistence is extracted

from the stores

● Reducers functions mutate the

state 
 
 
 

HOW WE IMPLEMENTED IT

Reducer State Store View

Action

ActionReducer

Reducer

dispatch

trigger

dispatch

trigger

newstate subscribe

newstate

state+action

STORE
● Minor differences

● Returns a Flowable instead of

callbacks

● State persistence is extracted 

 
 
 
 

class ConversationStoreImpl
@Inject constructor(repository: MessageRepository) : ConversationStore {
 private val listFlowable: Flowable<List<Message>>

 init {
 listFlowable = Flowable.fromCallable(repository::findAll)
 .repeatWhen { completed ->
 completed.zipWith(
 repository.dataUpdatedEvents(),
 BiFunction<Any, Any, Any> { item, _ -> item }
)
 }
 .share()
 }

 override fun getList(): Flowable<List<Message>> {
 return listFlowable
 }
}

HOW WE IMPLEMENTED IT

ACTION
● Type comes from the class

● Payload is optional 

 
 
 
 

data class CreateMessage(
 val msg: String,
 val status: MessageStatus) : Action()

data class UpdateMessage(
 val id: String,
 val status: MessageStatus) : Action()

interface MessageActions {
 fun sendMessage(message: String): Completable

 fun updateMessage(id: String,
 status: MessageStatus): Completable
}

ACTION CREATORS
● Describes the action pipeline

● Composes API calls and actions

● Returns an Rx Comletable 

 
 

HOW WE IMPLEMENTED IT

DISPATCHER
● Without waitFor it was just a

dumb pipe

● Completely removed

● Event pipes are declared with

Rx operators

● State is modified directly with

actions and a reducers 
 
 
 
 

fun changeMessageStatus(messages: List<Message>,
 action: UpdateMessage): List<Message> {
 return messages.map { message ->
 if (message.id == action.id) {
 message.copy(status = action.status)
 } else {
 message
 }
 }
}

HOW WE IMPLEMENTED IT

HOW WE IMPLEMENTED IT

HOW WE IMPLEMENTED IT

HOW WE IMPLEMENTED IT

HOW WE IMPLEMENTED IT

HOW WE IMPLEMENTED IT

HOW WE IMPLEMENTED IT

HOW WE IMPLEMENTED IT

HOW WE IMPLEMENTED IT

HOW WE IMPLEMENTED IT

HOW WE IMPLEMENTED IT

HOW WE IMPLEMENTED IT

HOW WE IMPLEMENTED IT

HOW WE IMPLEMENTED IT

HOW WE IMPLEMENTED IT

HOW WE IMPLEMENTED IT

HOW WE IMPLEMENTED IT

HOW WE IMPLEMENTED IT

PROS
● Unidirectional data flow

● State mutation only via actions

● Single source of truth: store

● Automatic re-render after state

update 
 
 

HOW WE IMPLEMENTED IT

Thanks for your attention

Attila Polacsek

Senior Android Developer | Supercharge

Contact us!

