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What is FLUX?
● Application architecture

● Pattern, not a framework

● Created by Facebook as a 

successor of client-side MVC

● Based on unidirectional data flow 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COMPONENTS
● Store

● Action

● Dispatcher

● View 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STORE
● Holds the application data

● Immutable from the outside

● Produces a change event 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● Actions data objects

● They define the internal API

● Action Creators are methods

● Send action to dispatcher 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DISPATCHER
● Receives all actions

● Broadcast them to stores

● Invoke callbacks in specific order 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// Facebook's own example for waitFor: 
CityStore.dispatchToken = flightDispatcher.register(function(payload) { 
   if (payload.actionType === 'country-update') { 
       // `CountryStore.country` may not be updated. 
       flightDispatcher.waitFor([CountryStore.dispatchToken]); 
       // `CountryStore.country` is now guaranteed to be updated. 

       // Select the default city for the new country 
       CityStore.city = getDefaultCityForCountry(CountryStore.country); 
   } 
});
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CONS
● All UI state is handled in stores

● Stores are too dependent

● Dispatcher is everywhere

● Not cancelable 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HOW WE IMPLEMENTED IT

On top of RxJava2



SCFlux
● Implemented on top of RxJava2

● Dependencies between stores 

are looser

● State persistence is extracted 

from the stores

● Reducers functions mutate the 

state 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STORE
● Minor differences

● Returns a Flowable instead of 

callbacks

● State persistence is extracted 

 
 
 
 

class ConversationStoreImpl 
@Inject constructor(repository: MessageRepository) : ConversationStore { 
   private val listFlowable: Flowable<List<Message>> 

   init { 
       listFlowable = Flowable.fromCallable(repository::findAll) 
           .repeatWhen { completed -> 
               completed.zipWith( 
                   repository.dataUpdatedEvents(), 
                   BiFunction<Any, Any, Any> { item, _ -> item } 
               ) 
           } 
           .share() 
   } 

   override fun getList(): Flowable<List<Message>> { 
       return listFlowable 
   } 
}
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ACTION
● Type comes from the class

● Payload is optional 

 
 
 
 

data class CreateMessage( 
    val msg: String, 
    val status: MessageStatus) : Action() 

data class UpdateMessage( 
    val id: String, 
    val status: MessageStatus) : Action() 

interface MessageActions { 
   fun sendMessage(message: String): Completable 
   
   fun updateMessage(id: String, 
                     status: MessageStatus): Completable 
}

ACTION CREATORS
● Describes the action pipeline

● Composes API calls and actions

● Returns an Rx Comletable 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DISPATCHER
● Without waitFor it was just a 

dumb pipe

● Completely removed

● Event pipes are declared with 

Rx operators

● State is modified directly with 

actions and a reducers 
 
 
 
 

fun changeMessageStatus(messages: List<Message>, 
                        action: UpdateMessage): List<Message> { 
    return messages.map { message -> 
        if (message.id == action.id) { 
            message.copy(status = action.status) 
        } else { 
            message 
        } 
    } 
}
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PROS
● Unidirectional data flow

● State mutation only via actions

● Single source of truth: store

● Automatic re-render after state 

update 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